Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effects of Exhaust Emission Control Devices and Fuel Composition on Speciated Emissions of S.I. Engines

1992-10-01
922180
Hydrocarbons and other organic materials emitted from S.I. engines cause ozone to form in the air. Since each species of organic materials has a different reactivity, exhaust components affect ozone formation in different ways. The effects of exhaust emission control devices and fuel properties on speciated emissions and ozone formation were examined by measuring speciated emissions with a gas chromatograph and a high-performance liquid chromatograph. In the case of gasoline fuels, catalyst systems with higher conversion rates such as close-coupled catalyst systems are effective in reducing alkenes and aromatics which show high reactivities to ozone formation. With deterioration of the catalyst, non-methane organic gas (NMOG) emission increases, but the specific reactivity of ozone formation tends to decrease because of the increase in alkane contents having low MIR values.
Technical Paper

A Comparison of Gas Chromatography-Based Methods of Analyzing Hydrocarbon Species

1994-03-01
940740
Gas chromatographic methods for analyzing hydrocarbon species in vehicle exhaust emissions were compared in terms of their collection efficiency, detection limit, repeatability and number of species detected using cylinder gas and tailpipe emission samples. The main methods compared were a Tenax cold trap injection (TCT) method (C5-C12 HCs) and a cold trap injection (CTI) method (C2-C4 HCs; C5-C12 HCs). Our own direct (DIR) method was used to confirm the collection efficiencies. Both methods yielded good results, but the CTI method showed low collection efficiency for some C2-C4 HCs. Measurement of individual species is needed with this method for accurate analysis of tailpipe emissions. Both the CTI method and the TCT method combined with the DIR method for determining C2-C4 HCs yielded nearly the same ozone specific reactivity values for the NMHC species analyzed.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

1995-02-01
950807
In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Technologies for Reducing Cold-Start Emissions of V6 ULEVs

1997-02-24
971022
New technologies are needed to reduce cold-start emissions in order to meet the more stringent regulations that will go into effect in Europe (EC2000 or EC2005) and in California (ULEV), especially for larger engines such as 6- and 8-cylinder units. One new technology in this regard is the electrically heated catalyst (EHC). However, the use of EHCs alone is not sufficient to achieve the necessary reduction in emissions. This paper discusses techniques for effectively combining the elements of an EHC system, including the introduction of secondary air into the exhaust, improved control of the air/fuel ratio, and an electric power supply method for EHCs. It is shown that it is more effective to promote exothermic reactions in the exhaust manifold than at the EHC. A suitable method for this purpose is to introduce secondary air into the exhaust near the exhaust valves.
Technical Paper

Fuel Enrichment Control System by Catalyst Temperature Estimation to Enable Frequent Stoichiometric Operation at High Engine Speed/Load Condition

2013-04-08
2013-01-0341
Fuel economy can be improved by reducing engine displacement, thanks to the resulting smaller friction losses and pumping losses. However, smaller engines frequently operate at high-engine speed and high-load, when pressure on the accelerator increases during acceleration and at high speed. To protect exhaust system components from thermal stress, exhaust gas temperature is reduced by fuel enrichment. To improve fuel economy, it is important to increase the frequency of stoichiometric operation at high-engine speed and high-load. Usually, the start timing of fuel enrichment is based upon temperature requirements to protect the catalyst. In the high-engine speed and high-load zone, the threshold temperature of catalyst protection is attained after some time because of the heat mass. Therefore, stoichiometric operation can be maintained until the catalyst temperature reaches the threshold temperature.
X