Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

A Personal Plane Air Transportation System - The PPlane Project

2011-10-18
2011-01-2697
The seventh European Framework Program (FP7) “Personal Plane” project (PPlane) aims at developing system ideas to enable personal air transport in the long term (2030 and beyond). Such a system will avoid the ever increasing congestion on European roads and offer an alternative to the current conventional transport system across Europe, in particular in those states that still have poor highway and railway networks. The preliminary assumption made in the PPlane project is that automatisms should be developed to enable a “regular Joe” to use a personal aircraft, in various weather conditions, without any command and control difficulties, using a “push button” navigation interface. An on-board automatic system will take care of the complex issues of integration into the airspace (other sky users, class of airspace, Special Use Airspace…), navigation and emergency management.
Technical Paper

EXTICE: EXTreme Icing Environement

2011-06-13
2011-38-0063
Recent aircraft incidents and accidents have highlighted the existence of icing cloud characteristics beyond the actual certification envelope defined by the JAR/FAR Appendix C, which accounts for an icing envelope comprising water droplets up to a diameter of 50 μm. The main concern is the presence of SLD (Supercooled Large Droplets), with droplet diameters well beyond 50 microns. In a previous European-funded project, EURICE, in-flight icing conditions and theoretical studies were performed to demonstrate the existence of SLD and to help characterize SLD clouds. Within the EXTICE project the problem of SLD simulation is addressed with both numerical and experimental tools is being addressed. In this paper the objectives and main achievements of the EXTICE project will be described.
Technical Paper

PEGASE - A Robust and Efficient Tool for Worst-Case Network Traversal Time Evaluation on AFDX

2011-10-18
2011-01-2711
Avionics systems distributed on AFDX networks are subject to stringent real-time constraints that require the system designer to have techniques and tools to guarantee the worst case traversal time of the network (WCTT) and thus ensure a correct global real-time behavior of the distributed applications/functions. The network calculus is an active research area based on the (min,+) algebra, that has been developed to compute such guaranteed bounds. There already exists several academics implementations but no up to date industrial implementation. To address this need, the PEGASE project gathers academics and industrial partners to provide a high quality, efficient and safe tool for the design of avionic networks using worst case performance guarantees. The PEGASE software is an up-to-date software in the sense that it integrates the latest results of the theories, in tight cooperation with academics researchers.
Technical Paper

The NACRE Innovative Evaluation Platform and its Navigation & Control Strategies

2011-10-18
2011-01-2632
Within the European Integrated Project NACRE (New Aircraft Concept REsearch) led by Airbus, a team of research centers and universities developed a multidisciplinary flying testbed called IEP (Innovative Evaluation Platform). Under the form of a dynamically scaled model of a future civil transport aircraft, its role is to assist engineers during the assessment of flight dynamics characteristics and noise reduction capabilities. After the feasibility study during which potential scientific and economical benefits of such new test facility have been identified, the team decided to design and manufacture the IEP. Because of the dual aspect of the system (it is a flying unmanned aerial vehicle and a test facility), an extensive requirement analysis has been carried out by the partners in order to identify the necessary operational modes and their associated navigation and control strategies.
Technical Paper

ASTRE - A Highly Performant Accelerometer for the Low Frequency Range of the Microgravity Environment

1994-06-01
941366
This paper describes the microaccelerometer ASTRE, developed as Laboratory Support Equipment of Columbus, to monitor the residual microgravity disturbance level in the very low frequency range. ASTRE will be integrated in the already flown Microgravity Measurement Assembly (MMA). The paper recalls the microgravity environment which is required on-board Columbus and shortly describes expected discrepancies between the requirements and the predicted, more noisy, situation.
Technical Paper

A New Contamination Analysis Software

2000-07-10
2000-01-2525
This paper describes the new analysis software for the contamination modelling and outgassing / vent analysis, which has been developed under ESTEC contract by HTS and ONERA. A major part of the software enhancements have been dedicated to the improvement of the algorithms describing the physical processes involved in outgassing and contamination of species in orbit conditions. However, this paper concentrates on additional aspects of the new software tool, which are of interest for space environment analysis software development in general and the thermal analysis community in particular: The use of commercial software packages for the generation of the discrete model geometry and result visualisation. The interfacing possibilities of the software tool with thermal analysis tools.
Technical Paper

A Penalization Method for 2D Ice Accretion Simulations

2019-06-10
2019-01-1939
Numerical tools for 3D in-flight icing simulations are not straightforward to automate when seeking robustness and quality of the results. Difficulties arise from the geometry and mesh updates which need to be treated with care to avoid folding of the geometry, negative volumes or poor mesh quality. This paper aims at solving the mesh update issue by avoiding the re-meshing of the iced geometry. An immersed boundary method (here, penalization) is applied to a 2D ice accretion suite for multi-step icing simulations. The suggested approach starts from a standard body-fitted mesh, thus keeping the same solution for the first icing layer. Then, instead of updating the mesh, a penalization method is applied including: the detection of the immersed boundary, the penalization of the volume solvers to impose the boundary condition and the extraction of the surface data from the field solution.
Journal Article

MUSIC-haic: 3D Multidisciplinary Tools for the Simulation of In-Flight Icing due to High Altitude Ice Crystals

2019-06-10
2019-01-1962
Icing is a major hazard for aviation safety. Over the last decades an additional risk has been identified when flying in clouds with high concentrations of ice-crystals where ice accretion may occur on warm parts of the engine core, resulting in engine incidents such as loss of engine thrust, strong vibrations, blade damage, or even the inability to restart engines. Performing physical engine tests in icing wind tunnels is extremely challenging, therefore, the need for numerical simulation tools able to accurately predict ICI (Ice Crystal Icing) is urgent and paramount for the aeronautics industry, especially regarding the development of new generation engines (UHBR = Ultra High Bypass Ratio, CROR = Counter rotating Open Rotor, ATP = Advanced Turboprop) for which analysis methods largely based on previous engines experience may be less and less applicable. The European research project MUSIC-haic has been conceived to fill this gap and has started in September 2018.
X