Refine Your Search

Topic

Search Results

Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Development of Integrated Modular Motor Drive for Traction Applications

2011-04-12
2011-01-0344
This paper introduces a promising approach for developing an integrated traction motor drive based on the Integrated Modular Motor Drive (IMMD) concept. The IMMD concept strives to meet aggressive power density and performance targets by modularizing both the machine and power electronics and then integrating them into a single combined machine-plus-drive structure. Physical integration of the power electronics inside the machine makes it highly desirable to increase the power electronics operating temperature including higher power semiconductor junction temperatures and improved device packaging. Recent progress towards implementing the IMMD concept in an integrated traction motor drive is summarized in this paper. Several candidate permanent magnet (PM) machine configurations with different numbers of phases between 3 and 6 are analyzed to compare their performance characteristics and key application features.
Journal Article

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

2012-04-16
2012-01-0817
To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle.
Journal Article

PHEV Cold Start Emissions Management

2013-04-08
2013-01-0358
Plug-in hybrid electric vehicles (PHEV) operate predominantly as electric vehicles (EV) with intermittent assist from the engine. As a consequence, the engine can be subjected to multiple cold start events. These cold start events have a significant impact on tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current conventional vehicles, the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. ORNL, in collaboration with the University of Tennessee, developed an Engine-In-the-Loop (EIL) test platform to investigate cold start emissions on a 2.0l Gasoline Turbocharged Direct Injection (GTDI) Ecotec engine coupled to a virtual series hybrid electric vehicle.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

2010-10-25
2010-01-2209
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

A Current Source Inverter Based Motor Drive for EV/HEV Applications

2011-04-12
2011-01-0346
The voltage source inverter (VSI) possesses several drawbacks that make it difficult to meet the requirements of automotive applications for inverter volume, lifetime, and cost. The VSI requires a very high performance dc bus capacitor that is costly and bulky. Other characteristics of the VSI not only negatively impact its own reliability but also that of the motor as well as motor efficiency. These problems could be eliminated or significantly mitigated by the use of the current source inverter (CSI). The CSI doesn't require any dc bus capacitors but uses three small ac filter capacitors and an inductor as the energy storage component, thus avoiding many of the drawbacks of the VSI. The CSI offers several inherent advantages that could translate into a substantial reduction in inverter cost and volume, increased reliability, a much higher constant-power speed range, and improved motor efficiency and lifetime.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

Assessing Grid Impact of Battery Electric Vehicle Charging Demand Using GPS-Based Longitudinal Travel Survey Data

2014-04-01
2014-01-0343
This paper utilizes GPS tracked multiday travel activities to estimate the temporal distribution of electricity loads and assess battery electric vehicle (BEV) grid impacts at a significant market penetration level. The BEV load and non-PEV load vary by time of the day and day of the week. We consider two charging preferences: home priority assumes BEV drivers prefer charging at home and would not charge at public charging stations unless the state of charge (SOC) of the battery is not sufficient to cover the way back to home; and charging priority does not require drivers to defer charging to home and assumes drivers will utilize the first available charging opportunity. Both home and charging priority scenarios show an evening peak demand. Charging priority scenario also shows a morning peak on weekdays, possibly due to workplace charging.
Technical Paper

Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

2000-04-02
2000-01-1556
A detailed component performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV) configurations for several battery pack and main electric traction motor voltages while meeting stringent Partnership for a New Generation of Vehicles (PNGV) power delivery requirements. A computer simulation calculated maximum current and voltage for each component as well as power and fuel consumption. These values defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables, boost converter, generator, rectifier, motor, and inverter. To identify a superior configuration or voltage level, life cycle costs were calculated based on the components required to execute simulated drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost, and battery replacement cost over the vehicle life.
Technical Paper

In-Situ Mechanical Property Evaluation of Dielectric Ceramics in Multilayer Capacitors

2000-04-02
2000-01-1535
The Young's modulus, hardness, and fracture toughness of barium titanate dielectric ceramics in three commercially available multilayer capacitors (MLCs) were measured in-situ using indentation and a mechanical properties microprobe. The three MLCs were equivalent in size (0805), capacitance (0.1 μF) and dielectric type (X7R). The Young's modulus and hardness of the dielectric ceramics in the three MLCs were similar, while there were statistically significant differences in their fracture toughnesses. The results provide insight into the assessment of MLC mechanical reliability, and show that equivalent electrical MLC rating is not necessarily a guarantee that the dielectric ceramics in them will exhibit equivalent mechanical performance.
Technical Paper

Power Electronics and Electric Machinery Innovations - U.S. GovernmentS Role in Pngv

2000-11-01
2000-01-C063
The U.S. Government plays an important role in the Partnership for a New Generation of Vehicles' (PNGV) electrical and electronics technologies with a program consisting of high-risk research and development (R&D) projects. The Department of Energy (DOE) plays the largest role in supporting these technologies to specifically address automotive needs. DOE has three Automotive Integrated Power Module (AIPM) contractors and two Automotive Electric Motor Drive (AEMD) contractors working to become viable suppliers for PNGV. Materials development projects are working to improve materials and devices needed in automotive motors and drives, such as permanent magnets, capacitors, sensors, connectors, and thermal management materials. Advancements in inverters, controls, and motors and generators conducted at DOE's national laboratories are also presented.
Technical Paper

Development of a Cold Start Fuel Penalty Metric for Evaluating the Impact of Fuel Composition Changes on SI Engine Emissions Control

2018-04-03
2018-01-1264
The U.S. Department of Energy’s Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its “light-off” temperature.
Technical Paper

Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

2016-04-05
2016-01-0248
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Technical Paper

Engine Operating Conditions, Fuel Property Effects, and Associated Fuel–Wall Interaction Dependencies of Stochastic Preignition

2023-10-31
2023-01-1615
This work for the Coordinating Research Council (CRC) explores dependencies on the opportunity for fuel to impinge on internal engine surfaces (i.e., fuel–wall impingement) as a function of fuel properties and engine operating conditions and correlates these data with measurements of stochastic preignition (SPI) propensity. SPI rates are directly coupled with laser–induced florescence measurements of dye-doped fuel dilution measurements of the engine lubricant, which provides a surrogate for fuel–wall impingement. Literature suggests that SPI may have several dependencies, one being fuel–wall impingement. However, it remains unknown if fuel-wall impingement is a fundamental predictor and source of SPI or is simply a causational factor of SPI. In this study, these relationships on SPI and fuel-wall impingement are explored using 4 fuels at 8 operating conditions per fuel, for 32 total test points.
X