Refine Your Search

Topic

Author

Search Results

Journal Article

Neutron Diffraction Studies of Intercritically Austempered Ductile Irons

2011-04-12
2011-01-0033
Neutron diffraction is a powerful tool that can be used to identify the phases present and to measure the spacing of the atomic planes in a material. Thus, the residual stresses can be determined within a component and/or the phases present. New intercritically austempered irons rely on the unique properties of the austenite phase present in their microstructures. If these materials are to see widespread use, methods to verify the quality (behavior consistency) of these materials and to provide guidance for further optimization will be needed. Neutron diffraction studies were performed at the second generation neutron residual stress facility (NRSF2) at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory on a variety of intercritically austempered irons. For similar materials, such as TRIP steels, the strengthening mechanism involves the transformation of metastable austenite to martensite during deformation.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing

2017-03-28
2017-01-1605
Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
Journal Article

Friction Stir Spot Welding for Structural Aluminum Sheets

2009-04-20
2009-01-0023
The Friction Stir Spot Welding (FSSW) process is a derivative of the friction stir welding (FSW) process, without lateral movement of the tool during the welding process. It has been applied in the production of aluminum joining for various Mazda and Toyota vehicles. Most of the applications and published studies were concentrated in aluminum sheet in the range of 1.0 to 1.5 mm, suitable for non-structural automotive closure applications. The objective of this study is to study the feasibility of FSSW process for automotive structural aluminum joining, up to 3 mm in thickness, for potentially replacement of self-piercing rivets (SPR) process. Joining thicker aluminum with FSSW tooling with a typical smooth concave shoulder and threaded probing pin, requires long process time, which would not be appropriate in mass-production automotive body construction. In this paper, an innovative FSSW tool with grooved shoulder was developed.
Journal Article

Failure Stress and Apparent Elastic Modulus of Diesel Particulate Filter Ceramics

2012-04-16
2012-01-1252
Three established mechanical test specimen geometries and test methods used to evaluate mechanical properties of brittle materials are adapted to the diesel particulate filter (DPF) architecture to evaluate failure initiation stress and apparent elastic modulus of the ceramics comprising DPFs. The three custom-designed test coupons are harvested out of DPFs to promote a particular combination of orientation of crack initiation and crack plane. The testing of the DPF biaxial flexure disk produces a radial tensile stress and a crack plane parallel with the DPF's longitudinal axis. The testing of the DPF sectored flexural specimen produces axial tension at the DPF's OD and a crack plane perpendicular to the DPF's longitudinal axis. The testing of the DPF o-ring specimen produces hoop tension at the DPF's original outer diameter (OD) and at the inner diameter of the test coupon, and a crack plane parallel to the DPF's longitudinal axis.
Journal Article

PHEV Cold Start Emissions Management

2013-04-08
2013-01-0358
Plug-in hybrid electric vehicles (PHEV) operate predominantly as electric vehicles (EV) with intermittent assist from the engine. As a consequence, the engine can be subjected to multiple cold start events. These cold start events have a significant impact on tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current conventional vehicles, the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. ORNL, in collaboration with the University of Tennessee, developed an Engine-In-the-Loop (EIL) test platform to investigate cold start emissions on a 2.0l Gasoline Turbocharged Direct Injection (GTDI) Ecotec engine coupled to a virtual series hybrid electric vehicle.
Technical Paper

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

2007-10-29
2007-01-3994
Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on gasoline and a 20% increase to 180 hp (134 kW) on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles.
Technical Paper

Nondestructive X-ray Inspection of Thermal Damage, Soot and Ash Distributions in Diesel Particulate Filters

2009-04-20
2009-01-0289
We describe novel results of ongoing research at 3DX-RAY Ltd and Oak Ridge National Laboratory using new, commercially available, nondestructive x-ray techniques to make engineering measurements of diesel particulate filters (DPF). Nondestructive x-ray imaging and data-analysis techniques were developed to detect and visualize the small density changes corresponding to the addition of substances such as soot and ash to DPF monoliths. The usefulness of this technique was explored through the analysis of field-aged samples, accelerated-aged samples, and the synthetic addition of ash and soot to clean DPF samples. We demonstrate the ability to visualize and measure flaws in substrates and quantify the distribution of ash and soot within the DPF. We also show that the technology is sensitive enough for evaluations of soot and ash distribution and thermal damage without removing the DPF from its metal casing.
Technical Paper

Emissions From a 5.9 Liter Diesel Engine Fueled With Ethanol Diesel Blends

2001-05-07
2001-01-2018
A certification diesel fuel and blends containing 10 and 15 volume % ethanol were tested in a 5.9-liter Cummins B Series engine. For each fuel blend, an 8-mode AVL test cycle was performed. The resulting emissions were characterized and measured for each individual test mode (prescribed combination of engine speed and load). These individual mode results are used to create a weighted average that is designed to approximate the results of the Heavy-Duty Transient Federal Test Procedure. The addition of ethanol was observed to have no noticeable effect on the emission of NOx but produced small increases in CO and HC. However, the particulate matter was observed to decrease 20% and 30% with the addition of 10% and 15% ethanol, respectively.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

European Lean Gasoline Direct Injection Vehicle Benchmark

2011-04-12
2011-01-1218
Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.01 LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

2009-11-02
2009-01-2723
Tests were conducted during 2008 on 16 late-model, conventional vehicles (1999 through 2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing as it was considered to more accurately represent real-world acceleration rates and speeds than the Federal Test Procedure (FTP) used for emissions certification testing. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the aggregate 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both NMHC and CO and increases in average emissions of ethanol and aldehydes.
Technical Paper

Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion

2009-11-02
2009-01-2709
Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOx and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOx trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOx emissions downstream of the LNT.
Technical Paper

DOE Plant-Wide Energy Assessment Results Related to the U.S. Automotive Industry

2006-04-03
2006-01-0594
Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Energy's Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts

2005-04-11
2005-01-1758
Phosphorous in diesel exhaust is derived via engine oil consumption from the zinc dialkyldithiophosphate (ZDDP) oil additive used for engine wear control. Phosphorous present in the engine exhaust can react with an exhaust catalyst and cause loss of performance through masking or chemical reaction. The primary effect is loss of light-off or low temperature performance. Although the amount of ZDDP used in lube oil is being reduced, it appears that there may is a minimum level of ZDDP needed for engine durability. One of the ways of reducing the effects of the resulting phosphorous on catalysts might be to alter the chemical state of the phosphorous to a less damaging form or to develop catalysts which are more resistant to phosphorous poisoning. In this study, lube oil containing ZDDP was added at an accelerated rate through a variety of engine pathways to simulate various types of engine wear or oil disposal practices.
X