Refine Your Search


Search Results

Viewing 1 to 13 of 13
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding

Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in boarder applications of Mg in automotive body construction. However, due to the large difference of melting temperatures of Mg and steel, fusion welding between two metals is very challenging. Ultrasonic spot welding (USW) has been demonstrated to join Mg to steel without melting and to achieve strong joints. However, galvanic corrosion between Mg and steel is inevitable but not well quantified. In this study, corrosion test of ultrasonic spot welds between 1.6-mm-thick Mg AZ31B-H24 and 0.8-mm-thick galvanized mild steel was conducted. No specific corrosion protection was applied in order to study the worst corrosion behavior. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the salt bath, air drying, then a constant humidity environment. Lap shear strength of the joints decreased linearly with the cycles.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

New Insights into the Unique Operation of Small Pore Cu-Zeolite SCR Catalyst: Overlapping NH3 Desorption and Oxidation Characteristics for Minimizing Undesired Products

An operational challenge associated with SCR catalysts is the NH3 slip control, particularly for commercial small pore Cu-zeolite formulations as a consequence of their significant ammonia storage capacity. The desorption of NH3 during increasing temperature transients is one example of this challenge. Ammonia slipping from SCR catalyst typically passes through a platinum based ammonia oxidation catalyst (AMOx), leading to the formation of the undesired byproducts NOx and N2O. We have discovered a distinctive characteristic, an overlapping NH3 desorption and oxidation, in a state-of-the-art Cu-zeolite SCR catalyst that can minimize NH3 slip during temperature transients encountered in real-world operation of a vehicle.
Technical Paper

Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts

The development of new catalytic materials is still dominated by trial and error methods, even though the experimental and theoretical bases for their characterization have improved dramatically in recent years. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. We have been exploring computationally complex but experimentally simple systems to establish a “catalysis by design” protocol that combines the power of theory and experiment. We hope to translate the fundamental insights directly into a complete catalyst system that is technologically relevant. The essential component of this approach is that the catalysts are iteratively examined by both theoretical and experimental methods.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Journal Article

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding with and without Adhesives

Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in broader applications of Mg in automotive body construction. Ultrasonic spot welding (USW) has been demonstrated successfully to join Mg to steel and to achieve strong joints. In this study, corrosion test of ultrasonic spot welds between 1.6 mm thick Mg AZ31B-H24 and 0.8 mm thick galvanized mild steel, without and with adhesive, was conducted. Adhesive used was a one-component, heat-cured epoxy material, and was applied between overlapped sheets before USW. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the 0.5% sodium chloride (NaCl) bath, a constant humidity environment, and a drying period. Lap shear strength of the joints decreased with the cycles of corrosion exposure. Good joint strengths were retained at the end of 30-cycle test.
Journal Article

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Journal Article

Impact of Accelerated Hydrothermal Aging on Structure and Performance of Cu-SSZ-13 SCR Catalysts

In this contribution, nuanced changes of a commercial Cu-SSZ-13 catalyst with hydrothermal aging, which have not been previously reported, as well as their corresponding impact on SCR functions, are described. In particular, a sample of Cu-SSZ-13 was progressively aged between 550 to 900°C and the changes of performance in NH3 storage, oxidation functionality and NOx conversion of the catalyst were measured after hydrothermal exposure at each temperature. The catalysts thus aged were further characterized by NH3-TPD, XRD and DRIFTS techniques for structural changes. Based on the corresponding performance and structural characteristics, three different regimes of hydrothermal aging were identified, and tentatively as assigned to “mild”, “severe” and “extreme” aging. Progressive hydrothermal aging up to 750°C decreased NOx conversion to a small degree, as well as NH3 storage and oxidation functions.
Technical Paper

Phosphorous Poisoning and Phosphorous Exhaust Chemistry with Diesel Oxidation Catalysts

Phosphorous in diesel exhaust is derived via engine oil consumption from the zinc dialkyldithiophosphate (ZDDP) oil additive used for engine wear control. Phosphorous present in the engine exhaust can react with an exhaust catalyst and cause loss of performance through masking or chemical reaction. The primary effect is loss of light-off or low temperature performance. Although the amount of ZDDP used in lube oil is being reduced, it appears that there may is a minimum level of ZDDP needed for engine durability. One of the ways of reducing the effects of the resulting phosphorous on catalysts might be to alter the chemical state of the phosphorous to a less damaging form or to develop catalysts which are more resistant to phosphorous poisoning. In this study, lube oil containing ZDDP was added at an accelerated rate through a variety of engine pathways to simulate various types of engine wear or oil disposal practices.
Technical Paper

The Roles of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/γ-AI2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation.
Technical Paper

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.