Refine Your Search


Search Results

Technical Paper

Metal Compression Forming - A New Process for Structural Aluminum Alloy Castings

Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process. The paper describes the casting process development involved in the production of an aluminum A357 alloy motor mount bracket, including the use of a filling and solidification model to design the gating and determine process parameters. Tensile properties of the component are presented and correlated with those of forged components.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Technical Paper

Dynamic Spot Weld Testing

Static and dynamic strength tests were performed on spot welded specimens made of dual-phase (DP) 780 and mild steels (DQSK). Lap-shear (LS) and cross-tension (CT) as well as a new mixed mode specimen were studied using MTS hydraulic universal testing machine for static tests and drop weight tower for dynamic tests. Three weld nugget sizes were made for each steel and CT and LS. DP780 with one weld size was also tested in mixed mode. Load and displacement as functions of time and fracture mode of the spot welds were recorded. Representative data are reported in this paper.
Technical Paper

Friction Bit Joining of Dissimilar Material Combinations of High Strength Steel DP 980 and Al Alloy AA 5754

A new spot joining technology relying on a consumable joining bit has been developed and evaluated on dual phase (DP) 980 steel and a dissimilar combination of aluminum alloy 5754-O and DP 980. This new process, called friction bit joining (FBJ), uses a consumable bit to create a solid-state joint in sheet materials by the action of cutting and frictional bonding. A series of experiments were done in which different welding parameters were employed and lap shear tension testing was carried out to evaluate performance. The best lap shear values averaged 6.5 kN.
Technical Paper

Ultrasonic Spot Welding of Galvanized Mild Steel to Magnesium AZ31B

Ultrasonic spot welding (USW) is a promising joining method for magnesium to steel to overcome the difficulties of fusion welding for these two materials with significant differences in melting temperatures. In a previous paper, the results of ultrasonic spot welding of magnesium to steel, with sonotrode engaged Mg piece, was presented. In this study, same material combination (0.8-mm-thick galvanized mild steel and 1.6-mm Mg AZ31B-H24) was used, but with sonotrode engaging steel piece. Various welding time, from 0.4 to 2.0 sec, were applied. Tensile lap-shear test, optical metallography, and scanning electron micrography were conducted for joint strength measurement and microstructural evaluation. The joint strength reached over 4.2 kN at 1.8 sec welding time. Mg-Zn eutectic was formed at the interface, indicating the interfacial temperature over 344°C. The study demonstrated USW to be a viable process for potential manufacturing of mixed-metal joints.
Technical Paper

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding

Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in boarder applications of Mg in automotive body construction. However, due to the large difference of melting temperatures of Mg and steel, fusion welding between two metals is very challenging. Ultrasonic spot welding (USW) has been demonstrated to join Mg to steel without melting and to achieve strong joints. However, galvanic corrosion between Mg and steel is inevitable but not well quantified. In this study, corrosion test of ultrasonic spot welds between 1.6-mm-thick Mg AZ31B-H24 and 0.8-mm-thick galvanized mild steel was conducted. No specific corrosion protection was applied in order to study the worst corrosion behavior. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the salt bath, air drying, then a constant humidity environment. Lap shear strength of the joints decreased linearly with the cycles.
Technical Paper

Big Area Additive Manufacturing and Hardware-in-the-Loop for Rapid Vehicle Powertrain Prototyping: A Case Study on the Development of a 3-D-Printed Shelby Cobra

Rapid vehicle powertrain development has become a technological breakthrough for the design and implementation of vehicles that meet and exceed the fuel efficiency, cost, and performance targets expected by today’s consumer. Recently, advances in large scale additive manufacturing have provided the means to bridge hardware-in-the-loop with preproduction mule chassis testing. This paper details a case study from Oak Ridge National Laboratory bridging the powertrain-in-the-loop development process with vehicle systems implementation using big area additive manufacturing (BAAM). For this case study, the use of a component-in-the-loop laboratory with math-based models is detailed for the design of a battery electric powertrain to be implemented in a printed prototype mule. The ability for BAAM to accelerate the mule development process via the concept of computer-aided design to part is explored.
Technical Paper

Graphitic Foam Thermal Management Materials for Electronic Packaging

The goal of this program is to utilize the recently developed high conductivity carbon foam for thermal management in electronics (heat exchangers and heat sinks). The technique used to fabricate the foam produces mesophase pitch-based graphitic foam with extremely high thermal conductivity and an open-celled structure. The thermal properties of the foam have been increased by 79% from 106 to 187 W/m·K at a density of 0.56 g/cm3 through process optimization. It has been demonstrated that when the high-thermal-conductivity graphitic foam is utilized as the core material for the heat exchanger, the effective heat transfer can be increased by at least an order of magnitude compared to traditional designs. A once-through-foam core/aluminum-plated heat exchanger has been fabricated for testing in electronic modules for power inverters.
Technical Paper

Evaluation of Large Tow-Size Carbon Fiber for Reducing the Cost of CNG Storage Tanks

The performance of large tow-size carbon fiber was evaluated to determine any design impacts that would prohibit their introduction into the fabrication process of compressed natural gas (CNG) storage tanks. The evaluation was based on manufacturing process trials and mechanical property tests. The tests consisted of impregnated strand, composite ring, and composite subscale cylinder tests for static strength, fatigue, and stress rupture. Modifications required in the wet-filament winding process are documented as well as the development of test methodologies required for testing large tow-size impregnated strands.
Technical Paper

Thermo-Mechanical Modeling of Friction Stir Spot Welding (FSSW)

This paper presents on-going finite element modeling efforts of friction stir spot welding (FSSW) process using Abaqus/Explicit as a finite element solver. Three-dimensional coupled thermal-stress model was used to calculate thermo-mechanical response of FSSW process. Adaptive meshing and advection schemes, which makes it possible to maintain mesh quality under large deformations, is utilized to simulate the material flow and temperature distribution in FSSW process. The predicted overall deformation shape of the weld joint resembles that experimentally observed. Temperature and stress graphs in the radial direction as well as temperature-deformation distribution plots are presented.
Technical Paper

A New Manufacturing Technology for Induction Machine Copper Rotors

The benefits of energy and operational cost savings from using copper rotors are well recognized. The main barrier to die casting copper rotors is short mold life. This paper introduces a new approach for manufacturing copper-bar rotors. Either copper, aluminum, or their alloys can be used for the end rings. Both solid-core and laminated-core rotors were built. High quality joints of aluminum to copper were produced and evaluated. This technology can also be used for manufacturing aluminum bar rotors with aluminum end rings. Further investigation is needed to study the lifetime reliability of the joint. The improvement of manufacturing fixture through prototype test is also required.
Technical Paper

Steel Processing Effects on Impact Deformation of UltraLight Steel Auto Body

The objective of the research presented in this paper was to assess the influence of stamping process on crash response of UltraLight Steel Auto Body (ULSAB) [1] vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of integration of forming processes and crash models.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Next Generation Casting Process Models - Predicting Porosity and Microstructure

The computer-aided-design and analysis of a robust casting process requires the optimization of both mold filling and solidification. A number of commercial casting codes are available for modeling the fluid flow during mold filling and the heat transfer during solidification. The next generation casting process models will build on present capabilities to allow the prediction of microporosity and other defects and microstructure. This paper will discuss the issues involved in the development of next generation casting process models and present results from a computer model for microporosity prediction that is based on first principles, and will take into account alloy composition, alloy microstructure, the initial hydrogen content of the liquid alloy, and the resistance to inter-dendritic fluid flow to feed shrinkage.
Technical Paper

Predictive Model and Methodology for Heat Treatment Distortion

The heat treatment of steel parts is an essential step in the manufacturing of high-performance components for a variety of commercial and military products. Distortion in the size and shape of parts resulting from the heat treatment process is a pervasive manufacturing problem that causes higher finishing costs, excessive scrap and rework, long delivery times, and negative environmental impact. To date, techniques that have been developed to reduce or eliminate heat treatment distortion are largely based on experience and have been limited to trial and error. This presentation describes the philosophy and results of an ongoing collaborative project to develop a methodology and computer simulation capability to predict ferrous alloy component response (distortion, residual stress, and microstructure) to industrial heat treatment processes for automotive, truck, bearing, and aerospace applications.
Journal Article

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding with and without Adhesives

Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in broader applications of Mg in automotive body construction. Ultrasonic spot welding (USW) has been demonstrated successfully to join Mg to steel and to achieve strong joints. In this study, corrosion test of ultrasonic spot welds between 1.6 mm thick Mg AZ31B-H24 and 0.8 mm thick galvanized mild steel, without and with adhesive, was conducted. Adhesive used was a one-component, heat-cured epoxy material, and was applied between overlapped sheets before USW. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the 0.5% sodium chloride (NaCl) bath, a constant humidity environment, and a drying period. Lap shear strength of the joints decreased with the cycles of corrosion exposure. Good joint strengths were retained at the end of 30-cycle test.
Journal Article

Compatibility Assessment of Elastomer Materials to Test Fuels Representing Gasoline Blends Containing Ethanol and Isobutanol

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline. Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene butadiene rubber (SBR) and silicone were exposed to the test fuels for 4 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 20 hours at 60°C and then remeasured for volume and hardness. Dynamic mechanical analysis (DMA) was also performed to determine the glass transition temperature (Tg). Comparison to the original values showed that all elastomer materials experienced volume expansion and softening when wetted by the test fuels.
Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
Journal Article

Diesel EGR Cooler Fouling

The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344°C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.