Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
Nissan has released our original HEV system in Japan on November 2010, and will release it in US market on March 2011. The 1 motor 2 clutch parallel type using conventional 7 speed automatic transmission has been employed without torque converter and with a manganese cathode and laminated type Li-ion Battery. This system is well recognized its higher efficiency but lower weight and cost, however, has never realized due to technical difficulties of smoothness. At this session, performance achievements and hinged breakthrough technologies will be presented. Presenter Tetsuya Takahashi, Nissan Motor Co., Ltd.
Video

Consumer Behavior and Risk Aversion

2011-11-04
Auto manufacturers have known and surveys confirm that consumers require short payback periods (2-4 years) for investments in fuel economy. Using societal discount rates, engineering-economic generally find substantial potential to increase fuel economy, cost-effectively. This phenomenon, often referred to as the ?energy paradox?, has been observed in nearly all consumers? choices of energy-using durable goods. Loss aversion, perhaps the most well established theory of behavioral economics, provides a compelling explanation. Engineering economic analyses generally overlook the fact that consumers? investments in fuel economy are not sure things but rather risky bets. Future energy prices, real world on-road fuel economy, and many other factors are uncertain. Loss aversion describes a fundamental human tendency to exaggerate the potential for loss relative to gain when faced with a risky bet. It provides a sufficient explanation for consumers?
Video

Hydrocarbon Fouling of SCR During PCCI Combustion

2012-06-18
The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust.
Video

Ionic Liquids as Novel Lubricants or Lubricant Additives

2012-05-10
For internal combustion engines and industrial machinery, it is well recognized that the most cost-effective way of reducing energy consumption and extending service life is through lubricant development. This presentation summarizes our recent R&D achievements on developing a new class of candidate lubricants or oil additives ionic liquids (ILs). Features of ILs making them attractive for lubrication include high thermal stability, low vapor pressure, non-flammability, and intrinsic high polarity. When used as neat lubricants, selected ILs demonstrated lower friction under elastohydrodynamic lubrication and less wear at boundary lubrication benchmarked against fully-formulated engine oils in our bench tests. More encouragingly, a group of non-corrosive, oil-miscible ILs has recently been developed and demonstrated multiple additive functionalities including anti-wear and friction modifier when blended into hydrocarbon base oils.
Video

Dynamometer Evaluation of Five Electric Vehicles Designed for Urban Deliver Route Services ?

2011-11-21
With nearly 220,000 vehicles, the United States Postal Service (USPS) has the largest non-military vehicle fleet in the world. This fleet requires over a billion dollars of fuel annually, and this figure does not include contracted vehicles. As a part of the business strategy, the USPS has embraced and invested in alternative fueled vehicles since 1899, when the first recorded use of an electric vehicle for USPS service was performed as a technology evaluation in Cleveland, OH. As part of a technology evaluation of advanced vehicle systems, the USPS has partnered with the DOE?s Vehicle Technology Program (VTP) to benchmark and quantify the capabilities of five vehicles in meeting specific Urban Route Delivery requirements, both with dynamometer and in-service testing. The all electric vehicle conversions have been developed by established electric vehicle systems manufacturers representing various perspectives on meeting the vehicle specific operation objectives.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
Technical Paper

Prediction of cooling flow rate through the front grille using flow analysis with a multi-level mesh system

2000-06-12
2000-05-0306
A flow analysis method with quick turnaround time has been studied for application to flows in the engine compartment of vehicles. In this research, a rapid modeling method based on the Cartesian mesh system was developed to obtain flow field information quickly. With this modeling method, the original shape is approximated by many small cubic cells, allowing automatic mesh generation in significantly less time. Moreover, a hierarchical mesh system that reduces the total number of meshes has been introduced. This multi-level mesh system is also highly capable of representing shapes in detail. Another important issue in flow calculations in the engine bay is the treatment of the boundary conditions such as the radiator and cooling fan. With the proposed method, the fluid dynamics characteristics of such components are measured, and characteristics such as the pressure loss/gain and the rotational vector of the fan are reflected in the flow field as empirical models.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

Design of Lane-Keeping Control with Steering Torque Input for a Lane-Keeping Support System

2001-03-05
2001-01-0480
This paper describes the method used to design the basic control algorithm of a lane-keeping support system that is intended to assist the driver's steering action. Lane-keeping control has been designed with steering torque as the control input without providing a minor loop for the steering angle. This approach was taken in order to achieve an optimum balance of lane-keeping control, ease of steering intervention by the driver and robustness. The servo control system was designed on the basis of H2 control theory. Robustness against disturbances, vehicle nonlinearity and parameter variation was confirmed by μ - analysis. The results of computer simulations and driving tests have confirmed that the control system designed with this method provides the intended performance.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of an Adaptive Cruise Control System with Stop-and-Go Capability

2001-03-05
2001-01-0798
An Adaptive Cruise Control system with stop-and-go capability has been developed to reduce the driver's workload in traffic jams on expressways. Based on an analysis of driving behavior characteristics in expressway traffic jams, a control system capable of modeling those characteristics accurately has been constructed to provide natural vehicle behavior in low-speed driving. The effectiveness of the system was evaluated with an experimental vehicle, and the results confirmed that it reduces the driver's workload. This paper presents an outline of the system and its effectiveness along with the experimental results.
Technical Paper

Estimation of Road Configuration and Vehicle Attitude by Lane Detection for a Lane-Keeping System

2001-03-05
2001-01-0799
This paper describes an image processing system for tracking a traffic lane by recognizing white lines on the road ahead. The system utilizes the features of the white lines and the Hough transformation to detect white line candidate points in images taken with a CCD camera. The parameters of the road configuration and vehicle attitude are estimated with an extended Kalman filter. This system has been applied to achieve a lane-keeping assistance system that provides steering control based on the host vehicle’s lateral position in its lane.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
Technical Paper

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

2001-05-14
2001-01-2061
The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.
Technical Paper

Exhaust Aftertreatment Research for Heavy Vehicles

2001-05-14
2001-01-2064
The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 emission regulations for light-duty vehicles will require effective exhaust emission controls (aftertreatment) for diesels in these applications. Diesel-powered heavy trucks face a similar situation for the 2007 regulations announced by EPA in December 2000. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and evaluation of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

Emissions From a 5.9 Liter Diesel Engine Fueled With Ethanol Diesel Blends

2001-05-07
2001-01-2018
A certification diesel fuel and blends containing 10 and 15 volume % ethanol were tested in a 5.9-liter Cummins B Series engine. For each fuel blend, an 8-mode AVL test cycle was performed. The resulting emissions were characterized and measured for each individual test mode (prescribed combination of engine speed and load). These individual mode results are used to create a weighted average that is designed to approximate the results of the Heavy-Duty Transient Federal Test Procedure. The addition of ethanol was observed to have no noticeable effect on the emission of NOx but produced small increases in CO and HC. However, the particulate matter was observed to decrease 20% and 30% with the addition of 10% and 15% ethanol, respectively.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Intelligent Sensing System to Infer DriverS Intention

2000-11-01
2000-01-C056
An approach to designing an intelligent vehicle controller for partially supporting driver operation of a vehicle is proposed. Vehicle behavior is regarded as a system performed by the interaction between the driving environment, vehicle as a machine and driver expectations for the vehicle movements. Driver intention to accelerate or decelerate is mainly generated by the perception of the driving environment. The model we propose involves information on the driving environment affecting driver intention taking driver differences in perceiving the driving environment into account. An engineering model for installing the vehicle controller is expressed by a multipurpose decision-maker allowing explicit treatment of the driving environment, vehicle action, and driver intention. A reasoning engine deals with differences in individual driver traits for generating intention to decelerate by using fuzzy integrals and fuzzy measures.
X