Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Technical Paper

Whole Field Bonded Steel Tensile Test Using Digital Image Correlation System

2010-04-12
2010-01-0960
Adhesive bonding has many applications in the automotive industry. The single-lapped bonded joint is the most typically used among various bonding types. This paper presents experimental research for determining the strain field of the single-lapped joint under tensile loading. The materials for the joint are epoxy-based structural adhesive and low-carbon electrolytic zinc steel plate. In the study, a DIC (digital image correlation) system was adopted to measure the strain distribution of the bonded joint during a tensile test. The bonded steel coupons in the tensile test were prepared according to the ASTM standard. During the measurement, images of the coupon joint were taken before and after the deformation process. Then the DIC system measured the strain of bonded joint by comparing two consecutive images. The measured data from the DIC was compared to data taken simultaneously from a traditional extensometer.
Technical Paper

High Speed Digital Holography: Equivalence of Full-Field Accelerometer for Vibration Measurement

1996-02-01
960715
This paper presents a novel technique allowing time-dependent displacement of an object to be studied by continuously digitizing the speckle images using a high speed image acquisition system. Instead of generating fringe patterns, the displacement versus time for any point of interest can be studied. Therefore, the technique is equivalent to “many” massless and noncontact displacement sensors, which is particularly useful for vibration measurement.
Technical Paper

Rapid Evaluation of Hermetic Seals in Automotive Microelectronic Packages Using Shearography

1996-02-01
960975
As the use of electronic devices in automobiles increases, the reliability of such devices is becoming increasingly important. One possible failure is due to leakage resulted from imperfect hermetical seal in mircochips and microelectronic packages. This paper presents an optical technique referred to as shearography for rapid evaluation of hermetics seals. The proposed process of leaking testing is very fast and practical.
Technical Paper

Rapid Measurement of Residual Stress by Computerized Shearography

1996-02-01
960974
This paper presents an optical method for evaluating residual stresses. The approach is based on measuring the deformation due to the relief of stress produced by a blind-hole drilling technique. The deformation is rapidly measured by shearography. Unlike the strain gage method, this method does not require mounting strain gages /transducers. A rapid process for detection of residual stress using a micro-indentation technique is also present. The method is practical for employment in a production/field environment.
Technical Paper

Shearography for Rapid Nondestructive Evaluation of Bonded Composite Structures

1999-03-01
1999-01-0947
Shearography is an optical technique developed for full-field measurement of surface deformation. It has since been accepted by industry as a practical nondestructive testing technique for evaluating the structural integrity of components and structures. Qualitatively, shearography reveals flaws from flaw-induced, anomalous deformation in the component under inspection, and quantitatively, shearography assesses the detected flaws through back-calculation from the anomalous deformation. This paper demonstrates that, with the use of multiple-frequency acoustical excitation together with the time-integrated shearographic recording technique, rapid and automated assessment of the integrity of adhesive-bonded composite structures can be realized in the actual plant environment.
Technical Paper

Assessment of Different Joining Techniques for Dissimilar Materials

2014-04-01
2014-01-0790
In this paper, experimental study and FEA simulation are performed to investigate the effect of three different methods for joining dissimilar metal coupons in terms of their strength and load transferring capacity. The joining techniques considered include adhesive bonding, bolting and hybrid bolting-and-bonding. Elastic-plastic material model with damage consideration is used for each of the joint components. Traction-separation rule and failure criterion is defined for adhesive. Load transfer capacity and the failure mode are assessed for each type of joining. Joint strength is examined in terms of the effects of adhesive property, bolt preload level, and friction coefficient. Results show that load transferred and failure mechanism vary significantly between samples with different joint methods; preload evolution in bolt changes with friction coefficient; hybrid joint generally has advantage over the other two methods, namely, bolting-only and bonding-only.
Technical Paper

Precision Measurement of Deformation Using a Self-calibrated Digital Speckle Pattern Interferometry (DSPI)

2010-04-12
2010-01-0958
A self-calibrating phase-shifting technique using a Michelson Interferometer is presented to measure phase distribution more accurately in Digital Speckle Pattern Interferometry (DSPI). DSPI is a well-established technique for the determination of whole field deformation via quantitatively measuring the phase distribution of speckle interferograms that use the phase shifting technique. In the phase shifting technique, the phase distribution in a speckle interferogram is quantitatively determined by recording multiple intensity images (usually four images) in which a constant phase shift, e.g. 90 degrees, is introduced between each consecutive image. A precise phase determination is greatly dependent on the accuracy of the phase shift introduced. The popular methods to minimize the error resulting from inaccurate phase shift use various algorithms and need to record five or eight images (rather than four images).
Book

Automotive Systems Engineering

2010-11-29
Automotive systems engineering addresses the system throughout its life cycle, including requirement, specification, design, implementation, verification and validation of systems, modeling, simulation, testing, manufacturing, operation and maintenance. This four-volume set features 49 papers, originally published from 1999 through 2010, that cover the latest research and developments on various aspects of automotive systems engineering. The four-volume set consists of these individual volumes: Automotive Systems Engineering - Overview Automotive Systems Engineering - Requirements and Testing Automotive Systems Engineering - Modeling Automotive Systems Engineering - Approach and Verification
X