Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Energy Efficient Routing for Electric Vehicles using Particle Swarm Optimization

2014-04-01
2014-01-1815
Growing concerns about the environment, energy dependency, and unstable fuel prices have increased the market share of electric vehicles. This has led to an increased demand for energy efficient routing algorithms that are optimized for electric vehicles. Traditional routing algorithms are focused on finding the shortest distance or the least time route between two points. These approaches have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power and capacity limits, as well as vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present a simulated solution to the energy efficient routing for electric vehicles using Particle Swarm Optimization. Simulation results show improvements in the energy consumption of the electric vehicle when applied to a start-to-destination routing problem.
Technical Paper

Decision-Based Universal Design - Using Copulas to Model Disability

2015-04-14
2015-01-0418
This paper develops a design paradigm for universal products. Universal design is term used for designing products and systems that are equally accessible to and usable by people with and without disabilities. Two common challenges for research in this area are that (1) There is a continuum of disabilities making it hard to optimize product features, and (2) There is no effective benchmark for evaluating such products. To exacerbate these issues, data regarding customer disabilities and their preferences is hard to come by. We propose a copula-based approach for modeling market coverage of a portfolio of universal products. The multiattribute preference of customers to purchase a product is modeled as Frank's Archimedean Copula. The inputs from various disparate sources can be collected and incorporated into a decision system.
Technical Paper

Comparative Benchmark Studies of Response Surface Model-Based Optimization and Direct Multidisciplinary Design Optimization

2014-04-01
2014-01-0400
Response Surface Model (RSM)-based optimization is widely used in engineering design. The major strength of RSM-based optimization is its short computational time. The expensive real simulation models are replaced with fast surrogate models. However, this method may have some difficulties to reach the full potential due to the errors between RSM and the real simulations. RSM's accuracy is limited by the insufficient number of Design of Experiments (DOE) points and the inherent randomness of DOE. With recent developments in advanced optimization algorithms and High Performance Computing (HPC) capability, Direct Multidisciplinary Design Optimization (DMDO) receives more attention as a promising future optimization strategy. Advanced optimization algorithm reduces the number of function evaluations, and HPC cut down the computational turnaround time of function evaluations through fully utilizing parallel computation.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Enhancing Decision Topology Assessment in Engineering Design

2014-04-01
2014-01-0719
Implications of decision analysis (DA) on engineering design are important and well-documented. However, widespread adoption has not occurred. To that end, the authors recently proposed decision topologies (DT) as a visual method for representing decision situations and proved that they are entirely consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of a designer using their responses. As in classical DA, this step is critical to encoding the DA's preferences so that further analysis and mathematical optimization can be performed on the correct set of preferences. We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that preferences under uncertainty can be trivially incorporated and that topologies can be constructed using single attribute topologies similarly to multi-linear functions in utility analysis. This incremental construction simplifies the process of topology construction.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

A Comparative Benchmark Study of using Different Multi-Objective Optimization Algorithms for Restraint System Design

2014-04-01
2014-01-0564
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating.
Journal Article

A Nonparametric Bootstrap Approach to Variable-size Local-domain Design Optimization and Computer Model Validation

2012-04-16
2012-01-0226
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, a recent approach was proposed where design optimization and model validation were concurrently performed using a sequential approach with both fixed and variable-size local domains. The variable-size approach used parametric distributions such as Gaussian to quantify the variability in test data and model predictions, and a maximum likelihood estimation to calibrate the prediction model. Also, a parametric bootstrap method was used to size each local domain. In this article, we generalize the variable-size approach, by not assuming any distribution such as Gaussian. A nonparametric bootstrap methodology is instead used to size the local domains. We expect its generality to be useful in applications where distributional assumptions are difficult to verify, or not met at all.
Journal Article

A Variable-Size Local Domain Approach to Computer Model Validation in Design Optimization

2011-04-12
2011-01-0243
A common approach to the validation of simulation models focuses on validation throughout the entire design space. A more recent methodology validates designs as they are generated during a simulation-based optimization process. The latter method relies on validating the simulation model in a sequence of local domains. To improve its computational efficiency, this paper proposes an iterative process, where the size and shape of local domains at the current step are determined from a parametric bootstrap methodology involving maximum likelihood estimators of unknown model parameters from the previous step. Validation is carried out in the local domain at each step. The iterative process continues until the local domain does not change from iteration to iteration during the optimization process ensuring that a converged design optimum has been obtained.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Journal Article

Piston Design Using Multi-Objective Reliability-Based Design Optimization

2010-04-12
2010-01-0907
Piston design is a challenging engineering problem which involves complex physics and requires satisfying multiple performance objectives. Uncertainty in piston operating conditions and variability in piston design variables are inevitable and must be accounted for. The piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. In this paper, an analytical piston model is used in a deterministic and probabilistic (reliability-based) multi-objective design optimization process to obtain an optimal piston design. The model predicts piston performance in terms of scuffing, friction and noise, In order to keep the computational cost low, efficient and accurate metamodels of the piston performance metrics are used. The Pareto set of all optimal solutions is calculated allowing the designer to choose the “best” solution according to trade-offs among the multiple objectives.
Journal Article

A Re-Analysis Methodology for System RBDO Using a Trust Region Approach with Local Metamodels

2010-04-12
2010-01-0645
A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent the correlation. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is based on importance sampling. It provides accurate results, if the support of the sampling PDF contains the support of the joint PDF of the input random variables. The sequential, trust-region optimization approach satisfies this requirement.
X