Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Further Inroads in the Shape Optimization of Radiator Tanks

Improvements in the pressure drop across and flow homogeneity in the tubes of automotive radiators are needed to reduce the power demands on the vehicle water pump and increase the lifetime of the radiator. The goal of this ongoing work is to develop a set of virtual tools coupling CFD flow simulations with numerical shape optimization methods to assist in the design and testing process of automotive heating and cooling components. In SAE paper 2002-01-0952, “Towards Shape Optimization of Radiator Cooling Tanks,” the authors developed and evaluated optimization criteria for pressure drop and mass flow rate distribution in a water-to-air automotive heat exchanger. In this follow-up paper, results based on the implementation of these optimization criteria are presented. More specifically, results concerning the placement of radiator inlets and outlets are addressed.
Technical Paper

Effects of Tuner Parameters on Hydraulic Noise and Vibration

Passengers' frequent requests are for less Noise, Vibration and Harshness (NVH) in the vehicle compartment. This and the reduction of noise and vibration levels from major sources like the engine necessitate better performance of other sources of noise and vibrations in a vehicle. Some of these sources are the hydraulic circuits including the power steering system. Fluid pulses or pressure ripples, generated typically by a pump, become excitation forces to the structure of a vehicle or the steering gear and represent a considerable source of discomfort to the vehicle passengers. Current power steering technology attenuates this ripple along the pressure line connecting the pump to the steering gear. Finding the optimum design configuration for the components (hose, tuner, tube, and others) has been a matter of experience-based trial and error. This paper is a part of a program to simulate and optimize fluid borne noise in hydraulic circuits.
Technical Paper

Towards Shape Optimization of Radiator Cooling Tanks

With increased demand for improvements in the efficiency and operation of all automotive engine components, including those in the engine cooling system, there is a need to develop a set of virtual tools that can aid in both the evaluation and design of automotive components. In the case of automotive radiators, improvements are needed in the overall pressure drop as well as the coolant flow homogeneity across all radiator tubes. The latter criterion is particularly important in the reduction of premature fouling and failure of heat exchangers. Rather than relying on ad hoc geometry changes with the goal of improving the performance of radiators, the coupling of CFD flow simulations with numerical shape optimization methods could assist in the design and testing of automotive heating and cooling components.