Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Use of Room Temperature Plasma to Produce and Enhance Engineered Fluid-Handling Surfaces

2005-07-11
2005-01-2905
Orbital Technologies Corporation (ORBITEC) and the University of Wisconsin (UW) have demonstrated the feasibility of utilizing plasma manufacturing methods to functionalize fluid handling surfaces. Performance of hydrophilic coatings generated with both oxygen plasma and dichlorosilane plasma on aluminum (SiH2Cl2) substrates was demonstrated. Both give similar results, significantly decreasing contact angles and improving wicking ability of machined capillary grooves. Deposition of silver nanoparticles using plasma was also demonstrated and tested. Silver concentrations of 2% were obtained on hydrophilic-coated samples. Testing indicated that the silver-coated samples were biocidal against Listeria monocytogenes. Oxide-coated aluminum substrates were also shown to exhibit biocidal action against L. monocytogenes and a variety of other microorganisms.
Technical Paper

ISRU Technologies to Support Human Space Exploration

2004-07-19
2004-01-2315
In-situ resource utilization (ISRU) is an important part of current mission architectures for both a return to the Moon and the eventual human exploration of Mars. ORBITEC has developed and demonstrated an innovative direct energy processing approach for carbon-reduction of lunar and Martian regolith that can operate in a nearly closed-loop manner. Carbon-reduction of regolith produces oxygen and a variety of other useful products, including silicon, iron and glass ceramic materials. In addition, various ISRU propulsion technologies that utilize lunar and Martian resources have been developed and demonstrated. Work is also being conducted with the USDA on techniques to use biomass and waste materials to manufacture items such as shelters, furniture, filters and paper. Atmospheric carbon dioxide on Mars would be used to support the production of biomass in excess of life support needs to be used as the raw material to manufacture useful products on-site.
Technical Paper

Root Module Environmental Control System: Status of the Phase II SBIR Circulating, Aeration, Nutrient Delivery System (CANDS)

2004-07-19
2004-01-2433
The CANDS (Circulating, Aeration, and Nutrient Delivery System) Phase II SBIR is currently developing and testing methods and procedures to control moisture, oxygen, and temperature in the root zone of a particulate based micro-gravity nutrient delivery system. The completion of the first year and a half of the CANDS Phase II SBIR has shown significant engineering developments towards environmental control of the root zone. These developments include the measurement of root zone oxygen content, characterization of forced and flood-ebb aeration rates, successful control of root zone moisture using miniature heat-pulse moisture sensors, and successful control of root zone temperature via an insulating/temperature controlling water jacket. At the conclusion of the CANDS Phase II SBIR an integrated root zone environmental control system will be constructed for integration into plant growth systems to eliminate the uncertainties that exist in current plant growth data.
X