Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

A Specification Analysis Framework for Aircraft Systems

2016-09-20
2016-01-2023
Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
Technical Paper

Power Thermal Management System Design for Enhanced Performance in an Aircraft Vehicle

2010-11-02
2010-01-1805
The thermal management of modern aircraft has become more challenging as aircraft capabilities have increased. The use of thermally resistant composite skins and the desire for low observability, reduced ram inlet size and number, have reduced the ability to transfer heat generated by the aircraft to the environment. As the ability to remove heat from modern aircraft has decreased, the heat loads associated with the aircraft have increased. Early in the aircraft design cycle uncertainty exists in both aircraft requirements and simulation predictions. In order to mitigate the uncertainty, it is advantageous to design thermal management systems that are insensitive to design cycle uncertainty. The risk associated with design uncertainty can be reduced through robust optimization. In the robust optimization of the thermal management system, three noise factors were selected: 1) engine fan air temperature, 2) avionics thermal load, and 3) engine thrust.
Technical Paper

Hardware-in-the-Loop Electric Drive Stand Issues for Jet Engine Simulation

2010-11-02
2010-01-1810
Next generation aircraft will require more electrical power, more thermal cooling, and better versatility. To attain these improvements, technologies will need to be integrated and optimized at a system-level. The complexity of these integrated systems will require considerable analysis. In order to characterize and understand the implications of highly-integrated aircraft systems, the effects of pulsed-power, highly-transient loads, and the technologies that drive system-stability and behavior, an approach will be taken utilizing integrated modeling and simulation with hardware-in-the-loop (HIL). Such experiments can save time and cost and increase the general understanding of electrical and thermal phenomena as it pertains to aircraft systems before completing an integrated ground demonstration. As a first step toward completing an integrated analysis, a dynamometer “drive stand” was characterized to assess its performance.
Journal Article

A MATLAB Simulink Based Co-Simulation Approach for a Vehicle Systems Model Integration Architecture

2020-03-10
2020-01-0005
In this paper, a MATLAB-Simulink based general co-simulation approach is presented which supports multi-resolution simulation of distributed models in an integrated architecture. This approach was applied to simulating aircraft thermal performance in our Vehicle Systems Model Integration (VSMI) framework. A representative advanced aircraft thermal management system consisting of an engine, engine fuel thermal management system, aircraft fuel thermal management system and a power and thermal management system was used to evaluate the advantages and tradeoffs in using a co-simulation approach to system integration modeling. For a system constituting of multiple interacting sub-systems, an integrated model architecture can rapidly, and cost effectively address technology insertions and system evaluations. Utilizing standalone sub-system models with table-based boundary conditions often fails to effectively capture dynamic subsystem interactions that occurs in an integrated system.
Journal Article

Introduction to Control Volume Based Transient Thermal Limit

2020-03-10
2020-01-0039
Advancement in modern aircraft with the development of more dynamic and efficient technologies has led to these technologies increasingly operated near or at their operation limits. More comprehensive analysis methods based on high-fidelity models co-simulated in an integrated environment are needed to support the full utilization of these advanced technologies. Furthermore, the additional information provided by these new analyses needs to be correlated with updates to traditional metrics and specifications. One such case is the thermal limit requirement that sets the upper bound on a thermal system temperature. Traditionally, this bound is defined based on steady-state conditions. However, advanced thermal management systems experience dynamic events where the temperature is not static and may violate steady-state requirements for brief periods of time.
X