Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Engine Cranking at Arctic Temperatures

1955-01-01
550272
A NEW arctic engine oil, designed to permit cold-weather operation of Army equipment, has been tested to determine required cranking effort. Data obtained are to be used to design new cranking equipment and to estimate the temperature limits of existing cranking equipment. Tests were conducted on six gasoline engines and five diesel engines using the new oil conforming to MIL-O-10295. Cranking the engines through a torquemeter permitted direct measurement of cranking torque. The results of the investigation are presented in this paper.
Technical Paper

Principles and Applications of Bypass Turbojet Engines

1956-01-01
560043
THE bypass or ducted-fan turbojet engine is a highly controversial aircraft powerplant. It is hoped that this presentation of its operating principles will lead to a more rational understanding of the pros and cons of the issue. Discussion is explicitly limited to transport aircraft applications at speeds in the neighborhood of 500 mph. Noise, duct losses, boundary-layer intake, and structural considerations are all shown to be important. It appears that a comprehensive design development of bypass or ducted-fan engines in connection with aircraft aerodynamics and structure poses a serious problem in the field of high-subsonic-speed transport aircraft.
Technical Paper

An Analytical Method for Optimizing the Scavenging Process of Uniflow Two-Cycle Diesel Engines

1965-02-01
650447
A mathematical model of the scavenging process of uniflow two-cycle diesel engines is proposed. It assumes that certain general characteristics of a particular engine type are known. With a number of simplifying assumptions, the scavenging process and engine performance can then be analyzed by means of a digital computer. Experimental results are used to demonstrate the validity of the analysis. A number of scavenging system variables are investigated and a combination is proposed which should give optimum performance.
Technical Paper

The Relation Between Knock and Exhaust Emissions of a Spark Ignition Engine

1970-02-01
700062
The effect of knock intensity on exhaust emissions was examined in a single cylinder spark ignition engine. The exhaust components surveyed were carbon monoxide, carbon dioxide, oxides of nitrogen (as NO), and total unburned hydrocarbons. Knock was induced solely by changing the spark timing. To describe knock intensity quantitatively, the magnitudes of the rate of pressure irregularities occurring during the combustion process were utilized. The use of the rate of pressure change to define a quantitative knock intensity scale is supported by an apparent generalization of the stoichiometric air-fuel ratio data. Graphs are presented that indicate the dependency of power output as well as exhaust emissions on knock intensity for various air-fuel ratios.
Technical Paper

A Comment on the Statistical Energy Approach

1969-02-01
690611
This paper presents the Statistical Energy Approach (SEA) method for estimating the gross response in complex interconnected structural systems. The method is intended to compensate for the difficulties present in evaluating parameters and excitation needed when attempting to use traditional methods of linear vibration analysis. The amount of information needed to apply the method is modest and the formulas are easy to use. Some limitation on application is demonstrated by a detailed example.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Key Outcomes of Year One of EcoCAR 2: Plugging in to the Future

2013-04-08
2013-01-0554
EcoCAR 2: Plugging In to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 28 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Real-Time On-Board Indirect Light-Off Temperature Estimation as a Detection Technique of Diesel Oxidation Catalyst Effectiveness Level

2013-04-08
2013-01-1517
The latest US emission regulations require dramatic reductions in Nitrogen Oxide (NOx) emissions from vehicular diesel engines. Selective Catalytic Reduction (SCR) is the current technology that achieves NOx reductions of up to 90%. It is typically mounted downstream of the existing after-treatment system, i.e., after the Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF). Accurate prediction of input NO₂:NO ratio is useful for control of SCR urea injection to reduce NOx output and NH₃ slippage downstream of the SCR catalyst. Most oxidation of NO to NO₂ occurs in the DOC since its main function is to oxidize emission constituents. The DOC thus determines the NO₂:NO ratio as feedgas to the SCR catalyst. The prediction of NO₂:NO ratio varies as the catalyst in the DOC ages or deteriorates due to poisoning. Thus, the DOC prediction model has to take into account the correlation of DOC conversion effectiveness and the aging of the catalyst.
Technical Paper

Computations of Soot and NO in Lifted Flames under Diesel Conditions

2014-04-01
2014-01-1128
In this work, computations of reacting diesel jets, including soot and NO, are carried out for a wide range of conditions by employing a RANS model in which an unsteady flamelet progress variable (UFPV) sub-model is employed to represent turbulence/chemistry interactions. Soot kinetics is represented using a chemical mechanism that models the growth of soot precursors starting from a single aromatic ring by hydrogen abstraction and carbon (acetylene) addition and NO is modeled using the kinetics from a sub-mechanism of GRI-Mech 3.0. Tracer particles are used to track the residence time of the injected mass in the jet. For the soot and NO computations, this residence time is used to track the progression of the soot and NO reactions in time. The conditions selected reflect changes in injection pressure, chamber temperature, oxygen concentration, and density, and orifice diameter.
Technical Paper

RANS and LES Study of Lift-Off Physics in Reacting Diesel Jets

2014-04-01
2014-01-1118
Accurate modeling of the transient structure of reacting diesel jets is important as transient features like autoignition, flame propagation, and flame stabilization have been shown to correlate with combustion efficiency and pollutant formation. In this work, results from Reynolds-averaged Navier-Stokes (RANS) simulations of flame lift-off in diesel jets are examined to provide insight into the lift-off physics. The large eddy simulation (LES) technique is also used to computationally model a lifted jet flame at conditions representative of those encountered in diesel engines. An unsteady flamelet progress variable (UFPV) model is used as the turbulent combustion model in both RANS simulations and LES. In the model, a look-up table of reaction source terms is generated as a function of mixture fraction Z, stoichiometric scalar dissipation rate Xst, and progress variable Cst by solving the unsteady flamelet equations.
Technical Paper

Uncertainties in Measurements of Emissions in Chassis Dynamometer Tests

2014-04-01
2014-01-1584
This paper illustrates a method to determine the experimental uncertainties in the measurement of tailpipe emissions of carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and particulates of medium-, and heavy-duty vehicles when tested on a heavy-duty chassis dynamometer and full-scale dilution tunnel. Tests are performed for different chassis dynamometer driving cycles intended to simulate a wide range of operating conditions. Vehicle exhaust is diluted in the dilution tunnel by mixing with conditioned air. Samples are drawn through probes for raw exhaust, diluted exhaust and particulates and measured using laboratory grade emission analyzers and a microbalance. At the end of a driving cycle, results are reported for the above emissions in grams/mile for raw continuous, dilute continuous, dilute bag, and particulate measurements.
Journal Article

Gerotor Pumps for Automotive Drivetrain Applications: A Multi Domain Simulation Approach

2011-09-13
2011-01-2272
This paper presents a simulation model for the analysis of internal gear ring pumps. The model follows a multi domain simulation approach comprising sub-models for parametric geometry generation, fluid dynamic simulation, numerical calculation of characteristic geometry data and CAD/FEM integration. The sub-models are interacting in different domains and relevant design and simulation parameters are accessible in a central, easy to handle graphical user interface. The potentials of the described tool are represented by simulation results for both steady state and transient pump operating conditions and by their correlation with measured data. Although the presented approach is suitable to all applications of gear ring pumps, a particular focus is given to hydraulic actuation systems used in automotive drivetrain applications.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

Pump Controlled Steer-by-Wire System

2013-09-24
2013-01-2349
Modern on-road vehicles have been making steady strides when it comes to employing technological advances featuring active safety systems. However, off-highway machines are lagging in this area and are in dire need for modernization. One chassis system that has been receiving much attention in the automotive field is the steering system, where several electric and electrohydraulic steering architectures have been implemented and steer-by-wire technologies are under current research and development activities. On the other hand, off-highway articulated steering vehicles have not adequately evolved to meet the needs of Original Equipment Manufacturers (OEM) as well as their end customers. Present-day hydrostatic steering systems are plagued with poor energy efficiency due to valve throttling losses and are considered passive systems relative to safety, adjustability, and comfort.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Implementation and Validation of a Series Plug-In Hybrid Electric Vehicle

2013-10-14
2013-01-2490
The Pennsylvania State University Advanced Vehicle Team (PSUAVT) is one of sixteen collegiate teams across North America participating in the EcoCAR 2: “Plugging In to the Future” competition. The PSUAVT designed and implemented a series plug-in hybrid electric vehicle (PHEV) for this competition. This architecture allows the vehicle to operate as a pure electric vehicle until the energy storage system (ESS) state of charge (SOC) is depleted. The auxiliary power unit (APU) then supplements the battery to extend range beyond that of a purely electric vehicle. To implement this design concept, the PSUAVT re-engineered a General Motors (GM) donated 2013 Chevrolet Malibu to house an electric traction motor, high capacity lithium-ion battery pack, and APU consisting of a low-displacement engine fueled by 85% ethanol/15% gasoline (E85) mixture and an electric generator.
Technical Paper

High Performance Actuation System Enabled by Energy Coupling Mechanism

2013-09-24
2013-01-2344
This paper introduces a high performance actuation mechanism to enable new systems and improve the performance and efficiency of existing systems. The concept described is based on coupling energy storage mechanisms with translational movement to increase the speed and controllability of linear actuators. Initial development is a high speed linear actuator for hydraulic proportional valves, and the concept can be extended into other applications. With high speed proportional valves, the performance of existing cam phasing systems can be improved or the actuation mechanisms can be applied directly to IC engine valve actuation. Other applications include active suspension control valves, transmission control valves, industrial and commercial vehicle fluid power systems, and fuel injection systems. The stored actuation energy (such as a rotating mass) is intermittently coupled and decoupled to produce linear or rotary motion in the primary actuator.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

2012-09-10
2012-01-1868
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
X