Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Solar Prototype for Shell-Eco Marathon Race

Apollo is the name of a solar prototype vehicle of Politecnico di Milano (Technical University of Milan) that has been conceived and employed for the Shell Eco-marathon® Europe competition (SEM). The paper introduces the concept design, the detailed design, the construction, the indoor tests, the successful employment at SEM and the end-of-life of the prototype. Apollo is a three-wheeler with a single driving and steering wheel at the rear. A wing with solar cells provides part of the electric energy required for running. The conceptual design started from the accommodation of the driver inside the vehicle. A number of iterations focusing on CFD (computation fluid dynamics) and wind-tunnel tests allowed to refine the total drag to less than 2N at 35 km/h. The tyre characteristic was measured on a drum. The camber of front wheels was set to 4 deg which provided the least rolling resistance.
Technical Paper

A New Electric Powertrain for Light Trucks: Indoor Testing and Advanced Simulation

A new electric powertrain and axle for light/medium trucks is presented. The indoor testing and the simulation of the dynamic behavior are performed. The powertrain and axle has been produced by Streparava and tested at the Laboratory for the Safety of Transport of the Politecnico di Milano. The tests were aimed at defining the multi-physics perfomance of the powertrain and axle (efficiency, acceleration and braking, temperature and NVH). The whole system for indoor tests was composed by the powertrain and axle (electric motor, driveline, suspensions, wheels) and by the test rig (drums, driveline and electric motor). The (driving) axle was positioned on a couple of drums, and the drums provided the proper torques to the wheels to reproduce acceleration and braking. Additionally a cleat fixed on one drum excited the vibration of the suspensions and allowed assessing NVH performance. The simulations were based on a special co-simulation between 1D-AMESIM and VIRTUAL.LAB.
Technical Paper

A Low Cost System for Active Gear Shift and Clutch Control

The objective of this study is to demonstrate the design and construction of an innovative active gear-shift and clutch for racecars, applied to a Formula Student car, based on the use of DC gear-motors. Racecars require extremely quick gear-shifts and every system to be as light as possible. The proposed solution is designed to reduce energy consumption, weight and improve gear-shift precision compared to traditionally employed electro-hydraulic solutions, although maintaining state of the art performances.
Technical Paper

A Review of the State of the Art of Electric Traction Motors Cooling Techniques

This paper provides a review on state-of-art modern cooling systems employed for thermal cooling of electric motors for vehicle applications. In recent years, the pursue of a more sustainable and ecofriendly mobility has pushed the research towards the development of electric vehicle powertrain systems. Besides the evident advantages of the adoption of electric traction systems in terms of pollution and efficiency, the need of an effective cooling system for the electric machine components gained more and more importance in order to maintain high efficiency and ensure high durability. In fact, it is known that high temperatures can be harmful for the electric motor: besides the evident damages for mechanical parts, the influence on the permanent magnet properties is not negligible [1] [2]. In this fast-evolving environment, different solutions for the thermal problem have been researched and adopted, each one with its own pros and cons.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.