Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Oxygen and Propellant Extraction from Martian Atmosphere: Feasibility Study of a Small Technological Demonstration Plant

The sustainability of Martian outposts development is strongly based on the capability of achieving a high level of autonomy both in terms of operations management and of resources availability. In situ production of consumables is a key point to allow humans to work and live on Mars avoiding or limiting the need for re-supplies of materials from Earth. Required consumables can be produced in situ exploiting the locally available resources, but also by means of green-houses and waste recycle systems. Dedicated robotic missions for in situ demonstration of this type of technologies are a fundamental step of the Martian In Situ Resources Utilization (ISRU) development roadmap. This paper is focused on the extraction of oxygen and fuels (e.g. methane) from the Martian atmosphere, and presents a feasibility study for a small technological demonstration plant.
Technical Paper

Multi-Dimensional Modeling of Combustion in Compression Ignition Engines Operating with Variable Charge Premixing Levels

Premixed combustion modes in compression ignition engines are studied as a promising solution to meet fuel economy and increasingly stringent emissions regulations. Nevertheless, PCCI combustion systems are not yet consolidated enough for practical applications. The high complexity of such combustion systems in terms of both air-fuel charge preparation and combustion process control requires the employment of robust and reliable numerical tools to provide adequate comprehension of the phenomena. Object of this work is the development and validation of suitable models to evaluate the effects of charge premixing levels in diesel combustion. This activity was performed using the Lib-ICE code, which is a set of applications and libraries for IC engine simulations developed using the OpenFOAM® technology.
Technical Paper

Identification of Agricultural Tyres' Handling Characteristics from Full Vehicle Experimental Tests

For passenger cars, individual tyre model parameters, used in vehicle models able to simulate vehicle handling behavior, are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. Indoor experiments on agricultural tyres are instead more challenging and thus generally not performed due to tyre size and applied forces. However, the knowledge of their handling characteristics is becoming more and more important since in the next few years, all agricultural vehicles are expected to run on ordinary asphalt roads at a speed of 80km/h. The present paper presents a methodology to identify agricultural tyres' handling characteristics based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers, J-turns, etc.), instead than during indoor tests.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

A Review of the State of the Art of Electric Traction Motors Cooling Techniques

This paper provides a review on state-of-art modern cooling systems employed for thermal cooling of electric motors for vehicle applications. In recent years, the pursue of a more sustainable and ecofriendly mobility has pushed the research towards the development of electric vehicle powertrain systems. Besides the evident advantages of the adoption of electric traction systems in terms of pollution and efficiency, the need of an effective cooling system for the electric machine components gained more and more importance in order to maintain high efficiency and ensure high durability. In fact, it is known that high temperatures can be harmful for the electric motor: besides the evident damages for mechanical parts, the influence on the permanent magnet properties is not negligible [1] [2]. In this fast-evolving environment, different solutions for the thermal problem have been researched and adopted, each one with its own pros and cons.
Technical Paper

Industry 4.0 and Automotive 4.0: Challenges and Opportunities for Designing New Vehicle Components for Automated and/or Electric Vehicles

The paper deals with the “wise sensorization” of vehicle components. In the upcoming full digitalization of mobility, vehicle components are getting more and more sensorized. The problem is why, what, when and where vehicle components can be sensorized. The paper attempts a preliminary problem statement for the sensorization of vehicle components. A theoretical basic investigation is introduced, setting the main concepts on which extended sensorization is advisable or not. The paradigms of Industry 4.0 and Automotive 4.0 are addressed, namely sensors are proposed to be used both for monitoring the manufacturing process and for monitoring the service life of the component. In general, sensors are proposed to be used for multiple purposes. Two examples of sensorized components are briefly presented. One refers to a sensorized electric motor, the other one refers to a sensorized wheel.