Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Effect of Spray-Wall Interaction on Air Entrainment in a Transient Diesel Spray

1993-03-01
930920
The influence of spray-wall interaction on air entrainment in an unsteady non-evaporating diesel spray was studied using laser Doppler anemometry. The spray was injected into confined quiescent air at ambient pressure and temperature and made to impact on a flat wall. The air velocity component normal to a cylindrical surface surrounding the spray was measured during the entire injection period, allowing to evaluate the time history of the entrained air mass flow rate. The influence of wall distance and spray impingement angle on air entrainment characteristics has been investigated and the results indicate that the presence of a wall increases the entrained mass flow rate in the region close to the surface, during the main injection period. Normal impingement appears to produce stronger effects than oblique incidence at 30 and 45 deg. A qualitative explanation of the results is also proposed, based on the drop-gas momentum exchange mechanism.
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Technical Paper

Identification of Agricultural Tyres' Handling Characteristics from Full Vehicle Experimental Tests

2014-04-01
2014-01-0874
For passenger cars, individual tyre model parameters, used in vehicle models able to simulate vehicle handling behavior, are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. Indoor experiments on agricultural tyres are instead more challenging and thus generally not performed due to tyre size and applied forces. However, the knowledge of their handling characteristics is becoming more and more important since in the next few years, all agricultural vehicles are expected to run on ordinary asphalt roads at a speed of 80km/h. The present paper presents a methodology to identify agricultural tyres' handling characteristics based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers, J-turns, etc.), instead than during indoor tests.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
Technical Paper

Effects of Fuel Temperature and Ambient Pressure on a GDI Swirled Injector Spray

2000-06-19
2000-01-1901
The effects of fuel temperature on both the geometry and the droplet size and velocity of a GDI swirled injector spray were investigated by means of visualizations and PDA measurements. Isooctane was used as model fuel and was injected in a quiescent bomb at injection pressure of 7 MPa. Bomb pressure ranged from 40 kPa to 800 kPa with injector nozzle temperature ranging from 293 K to 393 K. A drastic change in spray geometry was observed when conditions above the vaporization curve were reached. The temperature increase has two macroscopic effects on the spray geometry: at the nozzle exit the liquid flash boiling strongly enlarges the spray angle, at a certain distance from the nozzle the air entrainment collapses the spray. Raising the fuel temperature up to flash boiling conditions causes a significant decrease of the average droplet size.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Journal Article

Geometric and Fluid-Dynamic Characterization of Actual Open Cell Foam Samples by a Novel Imaging Analysis Based Algorithm

2017-10-05
2017-01-9288
Metallic open-cell foams have proven to be valuable for many engineering applications. Their success is mainly related to mechanical strength, low density, high specific surface, good thermal exchange, low flow resistance and sound absorption properties. The present work aims to investigate three principal aspects of real foams: the geometrical characterization, the flow regime characterization, the effects of the pore size and the porosity on the pressure drop. The first aspect is very important, since the geometrical properties depend on other parameters, such as porosity, cell/pore size and specific surface. A statistical evaluation of the cell size of a foam sample is necessary to define both its geometrical characteristics and the flow pattern at a given input velocity. To this purpose, a procedure which statistically computes the number of cells and pores with a given size has been implemented in order to obtain the diameter distribution.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
X