Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Extension of the Dynamic Mesh Handling with Topological Changes for LES of ICE in OpenFOAM®

The paper focuses on the development of a mesh moving method based on non-conformal topologically changing grids applied to the simulation of IC engines, where the prescribed motion of piston and valves is accomplished by rigidly translating the sub-domain representing the moving component. With respect to authors previous work, a more robust and efficient algorithm to handle the connectivity of non-conformal interfaces and a mesh-motion solver supporting multiple layer addition/removal of cells, to decouple the time-step constraints of the mesh motion and of the fluid dynamics, has been implemented as a C++ library to extend the already existing classes for dynamic mesh handling of the finite-volume, open-source CFD code OpenFOAM®. Other new features include automatic decomposition of large multiple region domains to preserve processors load balance with topological changes for parallel computations and additional tools for automatic preprocessing and case setup.
Technical Paper

CFD Simulation of a Sliding Vane Expander Operating Inside a Small Scale ORC for Low Temperature Waste Heat Recovery

This work proposes a focus on the simulation of a rotative volumetric expander via a CFD code. A customized application of OpenFOAM® has been developed to handle the particular motion of the calculation grid. The model uses a mesh to mesh interpolation technique, switching from a calculation grid to the new one on the basis of mesh quality considerations performed on the fly. This particular approach allows to account for the presence of leakages occurring between the stator and blade tips and also occurring at the top and bottom of the vanes. The fluid considered is the refrigerant R245fa, whose particular properties have been determined resorting to the NIST database. Experimental data, measured at different conditions of mass flow and fluid temperature, are compared to calculation results. Moreover, the CFD analysis has allowed the estimation of the influence of the leakage mass flow occurring at the tip of the vanes on the overall machine performances.
Technical Paper

Numerical Estimation of Asymmetry of In-Cylinder Flow in a Light Duty Direct Injection Engine with Re-Entrant Piston Bowl

Partially premixed combustion (PPC) can be applied to decrease emissions and increase fuel efficiency in direct injection, compression ignition (DICI) combustion engines. PPC is strongly influenced by the mixing of fuel and oxidizer, which for a given fuel is controlled mainly by (a) the fuel injection, (b) the in-cylinder flow, and (c) the geometry and dynamics of the engine. As the injection timings can vary over a wide range in PPC combustion, detailed knowledge of the in-cylinder flow over the whole intake and compression strokes can improve our understanding of PPC combustion. In computational fluid dynamics (CFD) the in-cylinder flow is sometimes simplified and modeled as a solid-body rotation profile at some time prior to injection to produce a realistic flow field at the moment of injection. In real engines, the in-cylinder flow motion is governed by the intake manifold, the valve motion, and the engine geometry.
Technical Paper

Combined Experimental and Numerical Investigation of the ECN Spray G under Different Engine-Like Conditions

A detailed understanding of Gasoline Direct Injection (GDI) techniques applied to spark-ignition (SI) engines is necessary as they allow for many technical advantages such as increased power output, higher fuel efficiency and better cold start performances. Within this context, the extensive validation of multi-dimensional models against experimental data is a fundamental task in order to achieve an accurate reproduction of the physical phenomena characterizing the injected fuel spray. In this work, simulations of different Engine Combustion Network (ECN) Spray G conditions were performed with the Lib-ICE code, which is based on the open source OpenFOAM technology, by using a RANS Eulerian-Lagrangian approach to model the ambient gas-fuel spray interaction.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.