Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

The 3Dcell Approach for the Acoustic Modeling of After-Treatment Devices

2011-09-11
2011-24-0215
In the last decades the continuously tightening limitations on pollutant emissions has led to an extensive adoption of after-treatment devices on the exhaust systems of modern internal combustion engines. While these devices are primarily introduced for reducing and controlling the emissions, they also play an important role influencing the wave motion inside the exhaust system and so affecting the acoustics and the performances of the engine. In this paper a novel approach is proposed for the modeling of two after-treatment devices: the catalyst and the Diesel Particulate Filter. The models are based on a fast quasi-3D approach, named 3Dcell, originally developed by the authors for the acoustic modeling of silencers. This approach allows to model the wave motion by solving the momentum equation along the three directions.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

Fast Hybrid Sensor for Soot of Production CI Engines

2017-09-04
2017-24-0137
During transients, engines tend to produce substantially higher peak emissions like soot - the main fraction of particular matter (PM) - which are the longer the more important as the steady state emissions are better controlled. While Diesel particulate filters are normally able to block them, preventing their occurrence would of course be more important. In order to achieve this goal, however, they must be measurable. While for most emissions commercial sensors of sufficient speed and performance are available, the same is not true for PMs, especially for production engines. Against this background, in the last years the possible use of a full stream 50Hz sensor based on Laser Induced Incandescence (LII) was investigated, and the results were very encouraging, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like the AVL Opacimeter) but confirmed by the analysis of combustion.
Technical Paper

A Modeling Study of Soot and De-NOx Reaction Phenomena in SCRF Systems

2011-06-09
2011-37-0031
The development of thermally durable zeolite NH3/Urea-SCR formulations coupled with that of high porosity filters substrates has opened the way to integrate PM and NOx control into a single device, namely an SCR-coated Diesel Particulate Filter (SCRF). A few experimental works are already present in the literature regarding SCRF systems, mainly addressing the DeNOx performances of the system (in both presence and absence of soot) under both steady state and transient conditions. The purpose of the present work is to perform a simulation study focused on phenomena which are expected to play key roles in SCRF systems, such as coupling of reaction and diffusion phenomena, soot effect on DeNOx activity, SCR coating effect on soot regeneration and filtration efficiency and competition between soot oxidation and DeNOx processes involving NO2.
Technical Paper

NO/NO2 Ratio based NH3 Control of a SCR

2014-04-01
2014-01-1565
The emissions of modern Diesel engines, which are known to have various health effects, are beside the drivers torque demands and low fuel consumptions one of the most challenging issues for combustion and after treatment control. To comply with legal requirements, emission control for heavy duty engines is not feasible without additional hardware, usually consisting of a Diesel oxidation catalyst (DOC), a Diesel particulate filter (DPF) and a selective catalytic reduction (SCR) system. In contrast to other NOx reduction systems, e.g. lean NOx traps, the SCR system requires an additional ingredient, namely ammonia (NH3), to reduce the NOx emissions to non harmful components. Consequently, the correct amount of NH3 dosing in the SCR catalyst is one of the critical components to reach high conversion rates and avoid ammonia slip.
Technical Paper

Adaptive SCR Model for MPC Control Including Aging Effects

2015-04-14
2015-01-1045
The focus in the development of modern exhaust after treatment systems, like the Diesel Oxidation Catalyst (DOC), the Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR), is to increase on one hand the oxidation rates of Carbon monoxide (CO), HC (Hydro Carbons) and NO (Nitrogen Oxide) and on the other hand the reduction rates of Particulate Matter (PM) and the NOx emissions to fulfill the more and more restricting requirements of the exhaust emission legislation. The simplest, practical most relevant way to obtain such a dosing strategy of a SCR system is the use of a nonlinear map, which has to be determined by extensive calibration efforts. This feedforward action has the advantage of not requiring a downstream NOx sensor and can achieve high conversion efficiency under steady-state operating conditions for nominal systems.
X