Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Compression Ratio and Injection Pressure on Emissions and Fuel Consumption of a Small Displacement Common Rail Diesel Engine

2005-04-11
2005-01-0379
The effect of variations of compression ratio (CR) and injection pressure (IP) on the emissions and performance of a small displacement common rail off-road diesel engine was evaluated. The operating point corresponding to the 5th mode of the ISO 8178 - C1 test cycle (intermediate speed / full load) was considered, since it represents one of the most critical operating conditions as far as exhaust emissions are concerned. The main effect of a reduction of the compression ratio, for a fixed injection timing, was found to be, as expected, an increase in NOx emissions along with a decrease of PM emissions, with a substantial redefinition of the PM-NOx trade-off curve; the choice of a proper value for the start of injection can therefore lead to a better compromise among pollutant emissions, although remarkable variations in BSFC and combustion noise must be taken into account.
Technical Paper

Experimental and Computational Analysis of a Tuned Exhaust System for a Small Two-Stroke Engine

1999-09-28
1999-01-3329
The application of computational methods for the development of a tuned exhaust system for a small two stroke scooter engine has here been evaluated. A single dimension fluid dynamic code has been employed, in order to simulate engine performances at full load with a prototype exhaust system, and data predicted from computer simulation have been compared with experimental results, obtained using a test rig and a data acquisition system specifically designed for small two-stroke engines. In this way the accuracy of the computer model has been assessed not only as far as gross engine performance parameters are concerned, but also concerning the prediction of pressure values in several locations inside the engine and the exhaust system. Finally, computer simulation techniques have been applied to the development of the prototype exhaust system, and have been proved to be powerful and effective techniques to identify the modifications required to obtain the engine performance targets.
X