Refine Your Search




Search Results


Characterization of a New Advanced Diesel Oxidation Catalyst with Low Temperature NOx Storage Capability for LD Diesel

Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Technical Paper

Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection

The influence of pilot injection timing and quantity on soot, NOx, combustion noise and bsfc has been analyzed on a passenger car DI Diesel engine prototype equipped with a common rail fuel injection system. The investigated engine operating points were 1500/5, 2000/2, 2500/8 rpm/bar, which are quite typical of EC driving cycles. For each of these operating conditions, the pilot injection quantity was varied by up to 15% of the total injected quantity and the pilot injection timing was varied between 32° and 1° crank angle degrees. The principal combustion characteristics were determined on the basis of the heat release, and a thorough statistical analysis was performed to infer the correlation between the combustion parameters and soot and NOx emissions.
Technical Paper

A Numerical Contribution to the Improvement of Individual Cylinder AFR Control in a 4 Cylinder S.I. Engine

Numerical simulation can be effectively used to reduce the experimental tests which are nowadays required for the analysis and calibration of engine control systems. In particular in this paper the use of a one-dimensional engine model to analyze the response of an UEGO sensor in the exhaust manifold of a 4 cylinder s.i. engine (with multipoint fuel injection) is described: numerical simulation has been used to simulate a misfunction of the fuelling system, which caused one of the four cylinders to be fuelled with an air/fuel ratio that was 10% richer than the others. The simulated UEGO response was then compared with experimental measurements, and after this validation process, the sensor model can be used to study a proper fuel injection control strategy thus reducing the required experimental tests, as outlined in a test case presented at the end of the paper.
Technical Paper

Gerotor Lubricating Oil Pump for IC Engines

This paper documents an extensive study aimed at a better understanding of the peculiarities and performance of crankshaft mounted gerotor pumps for IC engines lubrication. At different extents, the modelling, simulation and testing of a specific unit are all considered. More emphasis, at the modelling phase, is dedicated to the physical and mathematical description of the flow losses mechanisms; the often intricate aspects of kinematics being deliberately left aside. The pressure relief valve is analysed at a considerable extent as is the modelling of the working fluid, a typically aerated subsystem in such applications. Simulation is grounded on AMESim, a relatively novel tool in the fluid power domain, that proves effective and compliant with user deeds and objectives. Testing, at steady-state conditions, forms the basis for the pro!gressive tuning of the simulation model and provides significant insight into this type of volumetric pump.
Technical Paper

Influence of Late Intake-Valve Opening on the S.I. Engine-Performance in Idle Condition

This work has been carried out on a two-cylinder s.i. automotive engine and it investigates spark advance, air-fuel ratio and variable valve overlap for low emissions and low fuel consumption, with an acceptable cyclic irregularity under idle conditions. An original application of a variable valve timing system, based on a passive electro-hydraulic link, has been used for this purpose. The instantaneous engine speed and in-cylinder pressure have been measured and recorded by means of an acquisition data system that allows both the determination and the comparison of some cyclic irregularity indexes, under different engine settings, at idle. The optimum spark advance, air-fuel ratio and valve overlap, which yield the best compromise between fuel consumption and cyclic irregularity, under idle operating conditions, have therefore been pointed out.
Technical Paper

Speed Dependence of Turbulence Properties in a High-Squish Automotive Engine Combustion System

The variation of turbulent flow quantities with engine speed has been investigated in the combustion chamber of an automotive diesel engine with a high-squish conical-type in-piston bowl and one helicoidal intake duct, at speeds covering the wide range of 600-3000 rpm, under motored conditions. The investigation had the main purpose of studying the engine speed effect on the structure of both cycle-resolved and conventional turbulence over the induction, the compression and the early stage of the expansion stroke. The low frequency component of the fluctuating motion was also investigated.
Technical Paper

Comparison Between Heat Transfer and Knock Intensity on a Statistical Basis

Heat transfer in the combustion chamber of s.i. engines operating under knocking conditions has been detected and analyzed. Measurements have been carried out, cycle by cycle, on a CFR laboratory engine by means of a dedicated instrument and an original method. The relationship between heat transfer and knock intensity has been analyzed on a statistical basis, emphasizing knock intensity influence on heat transfer distribution. Moreover, the share of heat transfer more closely related to knock intensity has been highlighted: heat transfer is shown not to be significantly affected by knock intensity under light-to-medium knock conditions; on the contrary, the influence becomes evident under medium-to-heavy knock conditions. Eventually, heat transfer indexes influenced by knock intensity have been evaluated, allowing a comparison of knock-related thermal properties of fuels.
Technical Paper

A New Test Bench for HWA Fluid-Dynamic Characterization of a Two-Valved In-Piston-Bowl Production Engine

A new test bench has been set up and equipped in order to analyze the air mean motion and turbulence quantities in the combustion system of an automotive diesel engine with one helicoidal intake duct and a conical type in-piston bowl. A sophisticated HWA technique employing single- and dual-sensor probes was applied to the in-cylinder flow investigation under motored conditions. The anemometric probe was also operated as a thermometric sensor. An analytical-numerical procedure, based on the heat balance equations for both anemometric and thermometric wires, was refined and applied to compute the gas velocity from the anemometer output signal. The gas property influence, the thermometric sensor lag and the prong temperature effects were taken into account with this procedure. The in-cylinder velocity data were reduced using both a cycle-resolved approach and the conventional ensemble-averaging procedure, in order to separate the mean flow from the fluctuating motion.
Technical Paper

Turbulence Spectrum Investigation in a DI Diesel Engine with a Reentrant Combustion Bowl and a Helical Inlet Port

The frequency spectral structure of turbulence spatial components was investigated in the cylinder of an automotive diesel engine with a high-squish reentrant in-piston bowl of the conical type and a helical inlet port. A sophisticated HWA technique using single- and dual-sensor probes was applied for instantaneous air velocity measurements along the injector axis at practical engine speeds, up to 3000 rpm, under motored conditions. The investigation was carried out for both cycle-resolved and conventional turbulence components, as were determined by different wire orientations, throughout the induction, the compression and the early stage of the expansion stroke. The anisotropy of turbulence spectral structure and its temporal evolution during the engine cycle were examined by evaluating the autospectral density functions and the time scales of each turbulence component in consecutive correlation crank-angle intervals.
Technical Paper

Time-Frequency Spectral Stucture of Turbulence in an Automotive Engine

The results of an experimental study on the statistical structure of turbulence in an automotive engine are reported, with specific reference to the time-frequency domains. Autocorrelation and autospectral density coefficients were evaluated in consecutive crank-angle intervals throughout the induction and compression strokes. Eulerian time scales were obtained on the analogy of both the micro and integral time scales of turbulence for stationary flows. The spatial distribution of the turbulence structure was investigated in the combustion chamber of a diesel engine with a shallow in-piston bowl and two tangential intake ducts. The study was carried out for different swirl flow conditions, produced by deactivating one intake duct and/or by changing the engine speed. The velocity data were acquired using an advanced HWA technique, under motored conditions.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Experimental Analysis of the Combustion Process of Commercial and Reference Fuels on the CFR Laboratory Engine

As in the standard American Society for Testing and Materials (ASTM) procedure which is used to evaluate the fuel Octane Number (ON), some signal properties are considered, while others are neglected, it happens that different pressure signals of the sensor, obtained from different fuels and operating conditions, can lead to the same Knock Intensity index (KI) value, even though the knock behavior is not the same. Therefore the aim of this work was to analyze the standard signal processing chain of the Cooperative Fuel Research engine (CFR) (from the pressure sensor to the knock-meter display) and its effects on the value of the KI, for different fuels and operating conditions.
Technical Paper

A Comparison Between Different Hybrid Powertrain Solutions for an European Mid-Size Passenger Car

Different hybrid powertrains for a European mid-size passenger car were evaluated in this paper through numerical simulation. Different degrees of hybridizations, from micro to mild hybrids, and different architectures and power sources management strategies were taken into account, in order to obtain a preliminary assessment of the potentialities of different hybrid systems for the European passenger car market. Both diesel and gasoline internal combustion engines were considered: a 1.6 dm₃ Common Rail turbocharged diesel, and a 1.4 dm₃ spark ignition turbocharged engine, equipped with an innovative Variable Valve Actuation system. Diesel hybrid powertrains, although being subject to NOx emissions constraints that could jeopardize their benefits, offered substantial advantages in comparison with gasoline hybrid powertrains. Potentialities for fuel consumption reductions up to 25% over the NEDC were highlighted, approaching the 2020 EU 95 g/km CO₂ target.
Technical Paper

Energy Consumption in ICE Lubricating Gear Pumps

Scope of this work is the analysis of the energy consumed by lubricating gear pumps for automotive applications during a driving cycle. This paper presents the lumped parameter simulation model of gerotor lubricating pumps and the comparison between numerical outcomes and experimental results. The model evaluates the power required to drive the pump and the cumulative energy consumed in the driving cycle. The influence of temperature variations on leakage flows, viscous friction torque and lubricating circuit permeability is taken into account. The simulation model has been validated by means of a test rig for hydraulic pumps able to reproduce the typical speed, temperature and load profiles during a NEDC driving cycle. Experimental tests, performed on a crankshaft mounted pump for diesel engines, have confirmed a good matching with the simulation model predictions in terms of instantaneous quantities and overall energy consumption.
Technical Paper

An Experimental Investigation on OBD II Techniques for Fuel Injection System Monitoring in a Common Rail Passenger Car Diesel Engine

Different diagnostic techniques were experimentally tested on a common rail automotive 4 cylinder diesel engine in order to evaluate their capabilities to fulfill the California Air Resources Board (CARB) requirements concerning the monitoring of fuel injected quantity and timing. First, a comprehensive investigation on the sensitivity of pollutant emissions to fuel injection quantity and timing variations was carried out over 9 different engine operating points, representative of the FTP75 driving cycle: fuel injected quantity and injection timing were varied on a single cylinder at a time, until OBD thresholds were exceeded, while monitoring engine emissions, in-cylinder pressures and instantaneous crankshaft revolution speed.
Technical Paper

Performance and Emissions of a Turbocharged Spark Ignition Engine Fuelled with CNG and CNG/Hydrogen Blends

An experimental investigation was performed on a turbocharged spark-ignition 4-cylinder production engine fuelled with natural gas and with two blends of natural gas and hydrogen (15% and 25% in volume of H₂). The engine was purposely designed to give optimal performance when running on CNG. The first part of the experimental campaign was carried out at MBT timing under stoichiometric conditions: load sweeps at constant engine speed and speed sweeps at constant load were performed. Afterwards, spark advance sweeps and relative air/fuel ratio sweeps were acquired at constant engine speed and load. The three fuels were compared in terms of performance (fuel conversion efficiency, brake specific fuel consumption, brake specific energy consumption and indicated mean effective pressure) and brake specific emissions (THC, NOx, CO).
Technical Paper

Estimation of the Engine-Out NO2/NOx Ratio in a EURO VI Diesel Engine

The present work has the aim of developing a semi-empirical correlation to estimate the NO₂/NOx ratio as a function of significant engine operating variables in a modern EURO VI diesel engine. The experimental data used in the present study were acquired at the dynamic test bench of ICEAL-PT (Internal Combustion Engine Advanced Laboratory at the Politecnico di Torino), in the frame of a research activity on the optimization of a General Motors Euro VI prototype 1.6-liter diesel engine equipped with a single-stage variable geometry turbine and a solenoid Common Rail system. The experimental tests were conducted over the whole engine map. A preliminary analysis was carried out to evaluate the uncertainty of the experimental acquired data and the NO₂/NOx ratio.
Technical Paper

Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle

Given the growing concern for environmental issues, the automotive industry is working more deeply on the development of innovative technologies that reduce gas emissions and fuel consumption. Many car manufacturers have identified hybrid electric vehicles (HEV) and fuel cell vehicles as the most promising solutions alternatives. IDRApegasus is a fuel cell hydrogen vehicle developed at the Politecnico of Turin. It participated at the Shell Eco-marathon Europe in Rotterdam (Netherlands) from 17-19 May 2012, a competition for low energy consumption vehicles and also an educational project that joins the value of sustainable development with a vehicle that will use the smallest amount of fuel and produce the lowest emissions possible.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.