Refine Your Search

Topic

Author

Search Results

Technical Paper

Influence of Micro Geometry Modification on Gear Dynamics

2020-04-14
2020-01-1323
Gearbox behavior is strictly affected by gears, shaft, bearings and casing stiffnesses. As a matter of fact, their contribution to gear dynamics is fundamental for mechanical transmissions design. In this paper a semi-analytical model developed for the estimation of the dynamic behavior of two mating gears is presented and tested on two case studies. Starting with the estimation of the Static Transmission Error, intended as the difference between the theoretical and actual angular position between the two mating gears, the dynamic behavior of the mating elements is estimated by means of a Dynamic Model. The Dynamic Model takes into account the gears, the contact between teeth exchanging loads and the other mechanical elements reduced by means of a DOF reduction technique. Based on the block-oriented approach, Dynamic Model allows the user to easily manage the complexity of the system with further or less elements by adding or removing DOFs.
Journal Article

A Theoretical Investigation of the Influence of Powertrain Mounts on Transmission Torsional Dynamics

2017-03-28
2017-01-1124
This paper investigates the effect of the powertrain mounting system on the linear and nonlinear torsional dynamical behaviour of a transmission system. To this aim, two dynamic models, one with rigid mounts and the other with flexible mounts, are presented and compared: the first model considers only the torsional dynamics of transmission and driveline, while the second model includes also a 3 degrees-of-freedom powertrain block. The mechanical coupling and interaction between the powertrain block and transmission system is discussed and formulated. These models are then analyzed in terms of vibrational mode shapes, natural frequencies and Frequency Response Functions (FRFs); a sensitivity analysis of the main transmission parameters, e.g. the gear ratio, is also presented.
Technical Paper

Dual-Mass Flywheel with Torque Limiter: An Effective Solution for Overtorque Suppression in Automotive Transmission

2020-04-14
2020-01-1016
During some critical maneuvers, transmission systems using Dual Mass Flywheel (DMF) may experience overtorques, which could lead to structural damages of the transmission components. In a dual mass flywheel, total inertia is divided into two parts: a primary mass connected to the engine and a secondary mass to the transmission. The torque delivered by the engine is transferred from one mass to the other through a drive plate and a set of arc springs, the latter absorbing the torsional oscillations coming from internal combustion engine and the shocks caused by fast clutch engagements. This paper investigates overtorque issues and proposes a solution based on a torque limiter, consisting of a friction clutch inserted between the two masses, that limits the maximum torque transmitted through it. The basic idea is to replace the classic flat drive plate with a tapered drive plate that functions as a Belleville spring.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

Design, Construction and Experimental Testing of an High Efficiency Continuously Variable Transmission

2009-04-20
2009-01-1542
The design, the construction and the experimental characterization of a Continuously Variable Transmission (CVT) based on the rolling contact between conical bodies are analyzed. The studied CVT has been developed in order to allow a wide ratio range (up to 9), high torque capability (up to 500 Nm) and compactness. The main design problems and related solutions are explained focusing on the following aspects: contact area optimization, modular approach and development of different CVT versions to meet the current powertrain market needs. A total mechanical efficiency from 82% to 91% has been measured through experimental testing on a prototype.
Technical Paper

Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank

2009-04-20
2009-01-0443
The superior mobility of a military vehicle provides the combat crew with a tactical advantage through increased cross country speed. The suspension system plays a fundamental role in evaluating a vehicle mobility. A mathematical model that allows realistic simulations of vehicles operating in a wide spectrum of environmental conditions may help to lower costs and time required during their development. The paper concerns with vehicle-terrain interaction modeling, for a military tracked tank, through multi-body and block-oriented approaches. It is focused on the consequences that the suspension system has got on the comfort and on the performance. Thus through a multi-body software a realistic three dimensional model of a tracked fighting vehicle is developed. This virtual model confirms some experimental data available on its longitudinal dynamics. In order to simplify the multi-body simulations, a block-oriented approach is adopted to develop a model of the same vehicle.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

Numerical Simulation to Improve Engine Control During Tip-In Manoeuvres

2003-03-03
2003-01-0374
The potential of numerical simulation in the analysis of the dynamic transient response of a vehicle during tip-in manoeuvres has been evaluated. The dynamic behavior of the driveline of a typical European gasoline car was analyzed under a sharp throttle input. A one-dimensional fluid dynamic model of the engine was realized for the simulation of the input torque; afterwards, it was coupled with a driveline and vehicle model implemented in Matlab-Simulink environment. After a detailed validation process based on several sets of experimental data, the engine and vehicle coupled simulation was used to evaluate different control strategies during tip-in manoeuvres aiming to enhance the vehicle driveability.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Technical Paper

Sensitivity Analysis of the Design Parameters of a Dual-Clutch Transmission Focused on NVH Performance

2016-04-05
2016-01-1127
This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
Technical Paper

Enhancing Transmission NVH Performance through Powertrain Control Integration with Active Braking System

2017-06-05
2017-01-1778
This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Co-Simulation of a Specialized Tractor for Autonomous Driving in Orchards

2022-09-16
2022-24-0025
The concept of autonomous driving is becoming increasingly familiar in the automotive and “in-door” automation systems fields. Furthermore, the industrial development is focusing its efforts on industry 4.0, whose some main features are data transfer, programming, systems interconnection and automation. The agricultural sector just recently has experienced the first examples of autonomous agricultural vehicles, although agricultural mechanization has reached a good level of automation. Indeed, many examples of automatic machineries are already present in the market such as little robots for the execution of some operations. This work focuses on modelling and simulation of a self-driving orchard tractor. The main goal was to reproduce the behaviour of the specialized vehicle, moving in an orchard or a vineyard and conducting automatic or semi-automatic operations.
Technical Paper

Base Model Simulator (BMS) - A Vehicle Dynamics Model to Evaluate Chassis Control Systems Performance

2005-04-11
2005-01-0401
Chassis Control Systems development methodology is nowadays strongly based on analyzing performance by using PC vehicle dynamics simulation. Generally, the overall design, test bench and road validation process is continuously accompanied by simulation. The Base Model Simulator was developed by the Vehicle Dynamics Group at the Department of Mechanics of Politecnico di Torino both to satisfy this requirement and for educational purposes. It considers a complete vehicle dynamics mathematical model, including driver, powertrain, driveline, vehicle body, suspensions, steering system, brakes, tires. The Base Model Simulator takes in account the suspensions system elastokinematics, including, for example, automatic computation of camber variation during the vehicle roll motions. Tire model considered are either Pacejka's models or experimental data.
Technical Paper

A Linear Thermal Model for an Automotive Clutch

2000-03-06
2000-01-0834
The paper presents a diaphragm spring clutch linear thermal model. The main model aim was to estimate the temperature on the clutch disc slipping surfaces. That objective was pursued through a linear model to overcome the memory and computing time problems required by models with a more complex structure. The model parameters were experimentally identified. The model was validated employing a test bench, considering shift transient different as far as energy dissipated, clutch disc wear, frequency of shifting, gearbox temperature. The model structure, the methodology adopted to identify the model parameters, the experimental results obtained are presented and discussed.
Technical Paper

Experimental Methodologies To Determine Diaphragm Spring Clutch Characteristics

2000-03-06
2000-01-1151
The paper presents an experimental study to investigate the relationships among diaphragm spring clutch transmitted torque, thermal phenomena during clutch engagement and clutch wear. The work describes the development of a test bench presented by the Authors in a former paper. The original techniques were developed to measure the desired magnitudes and to develop the experimental methodology to investigate the relationships. The main results were obtained considering different operating conditions, dynamics of thermal phenomena and clutch wear.
Technical Paper

A Contribution to Engine and Vehicle Performance Prediction

2000-03-06
2000-01-1266
The application of computational methods for the development of the whole engine-vehicle system has been evaluated in this paper, to highlight the potential of computer simulation techniques applied to the analysis of engine-vehicle matching. First, engine performance was simulated using a one-dimensional fluid dynamic code, and predicted data were compared to experimental results, to assess the accuracy of the engine computer model not only as far as gross engine performance parameters are concerned, but also for the prediction of pressure values at several locations inside the engine. The simulation was also extended to the whole engine operating range, including part-load operating conditions. Afterwards, a vehicle simulation code was employed, to predict vehicle performance and fuel consumption.
Technical Paper

A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results

2018-04-03
2018-01-1089
Modern vehicles have several active systems on board such as the Electronic Stability Control. Many of these systems require knowledge of vehicle states such as sideslip angle and yaw rate for feedback control. Sideslip angle cannot be measured with the standard sensors present in a vehicle, but it can be measured by very expensive and large optical sensors. As a result, state observers have been used to estimate sideslip angle of vehicles. The current state of the art does not present an algorithm which can robustly estimate the sideslip angle for vehicles with all-wheel drive. A deep learning network based sideslip angle observer is presented in this article for robust estimation of vehicle sideslip angle. The observer takes in the inputs from all the on board sensors present in a vehicle and it gives out an estimate of the sideslip angle. The observer is tested extensively using data which are obtained from proving grounds in high tire-road friction coefficient conditions.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
X