Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Technical Paper

A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development

2009-06-09
2009-01-2261
This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention. The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements.
Technical Paper

A Methodology for Accounting for Uneven Ride Height in Soft Suspensions with Large Lateral Separation

2009-10-06
2009-01-2920
This study pertains to motion control algorithms using statistical calculations based on relative displacement measurements, in particular where the rattle space is strictly limited by fixed end-stops and a load leveling system that allows for roll to go undetected by the sensors. One such application is the cab suspension of semi trucks that use widely-spaced springs and dampers and a load leveling system that is placed between the suspensions, near the center line of the cab. In such systems it is possible for the suspension on the two sides of the vehicle to settle at different ride heights due to uneven loading or the crown of the road. This paper will compare the use of two moving average signals (one positive and one negative) to the use of one root mean square (RMS) signal, all calculated based on the relative displacement measurement.
Technical Paper

Thermo-Mechanical Reliability of Nano-Silver Sintered Joints versus Lead-Free Solder Joints for Attaching Large-Area Silicon Devices

2010-11-02
2010-01-1728
Nano-silver sintered bonding was carried out at 275°C and under 3MPa pressures, and soldering in a vacuum reflowing oven to reduce voiding. Both joints are subject to large shear stresses due to the mismatch in coefficients of thermal expansion (CTE) between the chip and the substrate. In this study, residual stresses in the chip-on-substrate assemblies were determined by measuring the bending curvatures of the bonded structures. An in-house optical setup measured the bending curvatures using a thin-film stress measurement technique. From the measured bending curvatures and the mechanical properties of the constituent materials, residual stresses were calculated. The thermo-mechanical reliabilities of both joining techniques were tested by thermal cycling. The chip assemblies were cycled between -40°C and 125°C (100 minutes of cycle time, 10 minutes of dwell time) and the changes in their bending curvatures were measured.
Technical Paper

Utilization of Finite Element Analysis to Develop Automotive Components

2010-10-06
2010-36-0004
The finite element method (FEM) is used daily in the automotive industry for such purposes as reducing the time of product development and improving the design based on analysis results, followed by later validation by tests in the laboratory and on the proving ground. This paper will present some of the methodology used to develop automotive components by finite element analysis, including procedures to specialize FEM models to obtain quantitative and qualitative results for systems such as body, chassis, and suspension components, as well as validation of the models by experimental data.
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

2016-10-17
2016-01-2222
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

Simulation and Bench Testing of a GM 5.3L V8 Engine

2017-03-28
2017-01-1259
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently modeling and bench testing powertrain components for a parallel plug-in hybrid electric vehicle (PHEV). The custom powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. The engine, a General Motors (GM) L83 5.3L V8 with Active Fuel Management (AFM) from a 2014 Silverado, is of particular importance for vehicle integration and functionality. The engine is one of two torque producing components in the powertrain. AFM allows the engine to deactivate four of the eight cylinders which is essential to meet competition goals to reduce petroleum energy use and greenhouse gas emissions. In-vehicle testing is performed with a 2014 Silverado on a closed course to understand the criteria to activate AFM. Parameters required for AFM activation are monitored by recording vehicle CAN bus traffic.
Technical Paper

Measurement of the Statistical Variation of Structural-Acoustic Characteristics of Automotive Vehicles

1993-05-01
931272
Two structure-borne and two airborne paths were measured on 99 “identical” Isuzu RODEOs and 57 “identical” Isuzu pickup trucks. Significant effort was made to control measurement variability but not environmental (climate) variations. A record was kept of the tests of a reference vehicle over the variation of environmental factors. The frequency response functions (FRFs) of the reference vehicle varied by approximately 2-4 dB over the frequency range 0-500 Hz for the structure-borne paths and over 0-1000 Hz for the airborne paths due to measurement and environmental variations. The FRFs of the fleet varied by as much as 5-10 dB over the same frequency range. In this paper, the vehicle tests are described. The reference and the fleet data are shown in raw form. Reduced data and implications of the results are also discussed.
Technical Paper

Using Pro/ENGINEER and ANSYS in Undergraduate Engineering Education

1994-09-01
941748
The authors relate their experience in teaching a senior level Computer-Aided Design (CAD) course in Mechanical Engineering using advanced Computer-Aided Engineering software. The course balances the theory and the need for hands-on experience with commercial CAD software in solving practical design problems. Students are given assignments ranging from simple 3D modeling exercises and 2D finite element analyses to an optimization project requiring more advanced 3D modeling and analysis. Where possible, analytical solutions are found and compared to the finite element results. The software allows the students to explore much more complex problems than would have otherwise been possible.
Technical Paper

The Technique of Uncertainty Analysis as Applied to the Momentum Equation for Accident Reconstruction

1995-02-01
950135
In experimental work, it is well known that measured values are not exact. Statistical treatment of uncertainty in measured values is common. The propagation of uncertainty in measured values into calculated values is examined. This technique of uncertainty analysis presented provides a rigorous mathematical technique for the analysis of uncertainty propagation from experimentally measured values into calculated results. The method of uncertainty analysis is introduced in general and an application to the momentum equation is examined to demonstrate the technique. The example presented demonstrates the effectiveness of the technique by demonstrating the growth of uncertainty in the calculated results around a singularity in the equations.
Technical Paper

Acoustical Finite Element Model of Elastic Porous Materials

1995-04-01
951087
A finite element model (FEM) of elastic noise control materials like polyurethane foams is presented in this paper, and its implementation in two-dimensional form as a computer program is discussed. So that realistic noise control treatments could be studied, methods for coupling the foam FEM with conventional acoustical and structural finite elements are also described. The validity of the foam FEM is demonstrated by computing the sound absorption and transmission characteristics of simple coupled air/foam/panel systems and by comparing the results with existing experimental and analytical results for such arrangements. The FEM has been used to show that the constraint of a foam layer at its edge stiffens the foam acoustically. In addition, it has been found that the constraint of the ends of the facing panels in a foam-lined double panel system increases the sound transmission loss significantly at low frequencies.
Technical Paper

Nondestructive Estimation of Degradation in Vehicle Joints Due to High Mileage

1997-04-08
971514
An experimental method for nondestructive estimation of damage in joints due to high mileage degradation in cars is presented. The method estimates damage by comparing transfer functions of the same car at zero and at high mileage. The potential of the method is demonstrated analytically using a three dimensional concept Finite Element Model (FEM) of a car body to simulate the transfer functions of this car body at zero and at high mileage. The results demonstrate that the method is effective for identifying the damaged joints as well as the relative degree of degradation.
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

1987-11-01
872288
The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
X