Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

1998-04-21
981256
In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
X