Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Regenerative Hydraulic Topographies using High Speed Valves

2009-10-06
2009-01-2847
This paper presents hydraulic topographies using a network of valves to achieve better energy efficiency, reliability, and performance. The Topography with Integrated Energy Recovery (TIER) system allows the valves and actuators to reconfigure so that flow from assistive loads on actuators can be used to move actuators with resistive loads. Many variations are possible, including using multiple valves with either a single pump/motor or with multiple pump/motors. When multiple pump/motors are used, units of different displacements can be chosen such that units are controlled to minimize time operating at low displacement, thus increasing overall system efficiency. Other variations include configurations allowing open loop or closed loop pump/motors to be used, the use of fixed displacement pump/motors, or the ability to store energy in an accumulator. This paper gives a system level overview and summarizes the hydraulic systems using the TIER approach.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Digital Electrohydraulic Control for Constant-Deceleration Emergency Braking

2002-03-19
2002-01-1464
A digital electrohydraulic control system for emergency braking is designed, simulated, built, and tested. First, a dynamic model of the system was developed with Matlab Simulink. The parameters are obtained experimentally. Feedback gains are obtained by tuning the model. Then, the digital controller is implemented on an industrial personal computer programmed in Turbo C++. The control strategy is an improved digital version of the PID control. The key element in the control of the brake was an electro-hydraulic proportional pressure valve. Experiments show that the control system successfully realizes constant-deceleration emergency brake within mine safety rules. The same hardware can be reprogrammed for various hoists, different load conditions, and different control objectives. Although the test was conducted on a mine hoist brake, the control system can be applied to most vehicles.
Technical Paper

Stability Analysis of a DC Power Electronics Based Distribution System

2002-10-29
2002-01-3184
This paper illustrates the application of the generalized immittance space approach to the analysis of multi-bus interconnected power electronics based power distribution system. The paper sets forth the basic classifications of power converters in regard to stability analysis, a set of network reduction transformations, and illustrates the use of these reductions in order to analyze the stability of a zonal dc distribution system.
Technical Paper

Analysis of Switched Capacitive Machines for Aerospace Applications

2002-10-29
2002-01-3182
Electric machinery is typically based upon the interaction of magnetic fields and current to produce electromagnetic force or torque. However, force and torque can also be produced through the use of electric fields. The purpose of this investigation is to briefly analyze the use of a switched capacitance electric field based machine to see if it may have aerospace applications for use as either propulsion motor for unmanned aerospace vehicle (UAV) or lightweight flywheel applications for aerospace applications. It is shown that although its use as a hub propulsion motor is not feasible, it may be a candidate for use in a power flywheel energy storage system.
Technical Paper

Polytopic Modeling and Lyapunov Stability Analysis of Power Electronics Systems

2002-10-29
2002-01-3203
Power electronics based power distribution systems are inherently nonlinear often behaving as constant power loads. Stability analysis of such systems typically is limited to local behavior. Herein polytopic modeling techniques are presented. Classification of polytopic model equilibrium points is made and methods of determining uniform asymptotic stability are presented.
Technical Paper

Advanced Hydraulic Systems for Active Vibration Damping and Forklift Function to Improve Operator Comfort and Machine Productivity of Next Generation of Skid Steer Loaders

2016-09-27
2016-01-8116
Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
Technical Paper

Case Study of an Electric-Hydraulic Hybrid Propulsion System for a Heavy Duty Electric Vehicle

2016-09-27
2016-01-8112
In order to improve efficiency and increase the operation of electric vehicles, assistive energy regeneration systems can be used. A hydraulic energy recovery system is modeled to be used as a regenerative system for supplementing energy storage for a pure electric articulated passenger bus. In this study a pump/motor machine is modeled to transform kinetic energy into hydraulic energy during braking, to move the hydraulic fluid from the low pressure reservoir to the hydraulic accumulator. The simulation of the proposed system was used to estimate battery savings. It was found that on average, approximately 39% of the battery charge can be saved when using a real bus driving cycle.
Technical Paper

Active Vibration Damping for Construction Machines Based on Frequency Identification

2016-09-27
2016-01-8121
Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
Technical Paper

Designing a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1763
The Purdue University EcoMakers team has completed its first year of the EcoCAR 2 Competition, in which the team has designed a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle that meets the performance requirements of a mid-size sedan for the US market, maintaining capability, utility and consumer satisfaction while minimizing emissions, energy consumption and petroleum use. The team is utilizing a 1.7L 14 CI engine utilizing B20 (20% biodiesel, 80% diesel), a 16.2 kW-hr A123 battery pack, and a Magna E-Drive motor to power the front and rear wheels. This will allow the vehicle to have a charge-depleting range of 75 miles. The first year was focused on the simulation of the vehicle, in which the team completed the controls, packaging and integration, and electrical plans for the vehicle to be used and implemented in years two and three of the competition.
Technical Paper

Externally Electro-Pneumatically Shifting System (E.P.S) to Install on Manual Transmissions

2012-09-24
2012-01-1994
In this study, an Electro-pneumatic shifting system (E.P.S) has been designed to install on manual transmissions to make the selecting and shifting process faster and more reliable compared to manual systems. Shifting mechanism of a six speed gear box has been improved by using two tandem pneumatic cylinders, position sensors, pneumatic valves, and a controlling board based on AVR microcontroller. The central processing unit uses an electronic control system to provide the optimized operation of shift mechanism. This system can be easily adjusted in order to install externally on manual transmission systems without any changes on housing and transmission shift links.
Technical Paper

Designing a High Voltage Energy Storage System for a Parallel-Through-The-Road Plug-In Hybrid Electric Vehicle

2013-04-08
2013-01-0557
A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle is being created by modifying a 2013 Chevrolet Malibu. This is being accomplished by replacing the stock 2.4L gasoline engine which powers the front wheels of the vehicle with a 1.7L diesel engine and by placing a high voltage electric motor in the rear of the vehicle to power the rear wheels. In order to meet the high voltage needs of the vehicle created by the PTTR hybrid architecture, an energy storage system (ESS) will need to be created. This paper explains considerations, such as location, structure integrity, and cooling, which are needed in order to properly design an ESS.
Technical Paper

Pump Controlled Steer-by-Wire System

2013-09-24
2013-01-2349
Modern on-road vehicles have been making steady strides when it comes to employing technological advances featuring active safety systems. However, off-highway machines are lagging in this area and are in dire need for modernization. One chassis system that has been receiving much attention in the automotive field is the steering system, where several electric and electrohydraulic steering architectures have been implemented and steer-by-wire technologies are under current research and development activities. On the other hand, off-highway articulated steering vehicles have not adequately evolved to meet the needs of Original Equipment Manufacturers (OEM) as well as their end customers. Present-day hydrostatic steering systems are plagued with poor energy efficiency due to valve throttling losses and are considered passive systems relative to safety, adjustability, and comfort.
Technical Paper

Multi-Objective Bayesian Optimization of Lithium-Ion Battery Cells

2022-03-29
2022-01-0703
In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. A LIB is composed of several unit cells. Therefore, one of the most important factors that determine the performance of a LIB are the characteristics of the unit cell. The design of LIB cells is a challenging problem since it involves the evaluation of expensive black-box functions. These functions lack a closed-form expression and require long-running time simulations or expensive physical experiments for their evaluation. Recently, Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition function that guides the optimization.
Technical Paper

Dynamic Simulation of a Position-Controlled Electrohydraulic System Using EASY5

1999-09-14
1999-01-2855
A servovalve - controlled hydraulic motor - driven positioning system was built. The hydraulic system was modeled and simulated using EASY5 software which had predefined hydraulic components models in addition to the ability of defining new ones. EASY5 model made it possible to study the dynamic behavior of the system under varied conditions of entrained air, motor displacement, motor leakage, and mass changes. Different systems components were tested in order to have the required data needed to build the final model. Pump flow rate, motor leakage, servovalve leakage, and slide table friction were experimentally measured. The slide table dynamic model was proposed and the performance data was measured. Eigenvalue sensitivity analysis showed that fluid line between the hydraulic motor and the servovalve is the most influential factor on system stability.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

A Transfer Path Approach for Experimentally Determining the Noise Impact of Hydraulic Components

2015-09-29
2015-01-2854
This work contributes to the overall goal of identifying and reducing noise sources and propagation in hydraulic systems. This is a general problem and a primary design concern for all fluid power applications. The need for new methods for identification of noise sources and transmission is evident in order to direct future modeling and experimental efforts aimed at reducing noise emissions of current fluid power machines. In this paper, this goal is accomplished through the formulation of noise functions used to identify contributions and transfer paths from different components of the system. An experimental method for noise transfer path analysis was developed and tested on a simple hydraulic system composed of a reference external gear pump, attached lines, and loading valve. Pressure oscillations in the working fluid are measured at the outlet of the pump. Surface vibrations are measured at multiple locations on the pump and connected system.
Technical Paper

Bayesian Optimization of Active Materials for Lithium-Ion Batteries

2021-04-06
2021-01-0765
The design of better active materials for lithium-ion batteries (LIBs) is crucial to satisfy the increasing demand of high performance batteries for portable electronics and electric vehicles. Currently, the development of new active materials is driven by physical experimentation and the designer’s intuition and expertise. During the development process, the designer interprets the experimental data to decide the next composition of the active material to be tested. After several trial-and-error iterations of data analysis and testing, promising active materials are discovered but after long development times (months or even years) and the evaluation of a large number of experiments. Bayesian global optimization (BGO) is an appealing alternative for the design of active materials for LIBs. BGO is a gradient-free optimization methodology to solve design problems that involve expensive black-box functions. An example of a black-box function is the prediction of the cycle life of LIBs.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
X