Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

RANS and LES Study of Lift-Off Physics in Reacting Diesel Jets

2014-04-01
2014-01-1118
Accurate modeling of the transient structure of reacting diesel jets is important as transient features like autoignition, flame propagation, and flame stabilization have been shown to correlate with combustion efficiency and pollutant formation. In this work, results from Reynolds-averaged Navier-Stokes (RANS) simulations of flame lift-off in diesel jets are examined to provide insight into the lift-off physics. The large eddy simulation (LES) technique is also used to computationally model a lifted jet flame at conditions representative of those encountered in diesel engines. An unsteady flamelet progress variable (UFPV) model is used as the turbulent combustion model in both RANS simulations and LES. In the model, a look-up table of reaction source terms is generated as a function of mixture fraction Z, stoichiometric scalar dissipation rate Xst, and progress variable Cst by solving the unsteady flamelet equations.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Computer Modeling and Simulation of a Tracked Log Skidder with Different Grapple Configurations

1998-09-14
981979
A track-type grapple log skidder was dynamically modeled to allow machine modification by computer to determine the effects of these modifications on the operation of the machine in the forest. The model consisted of an undercarriage, power train, log/drag force, and logging equipment (arch and grapple). This skidder had three types of logging attachments: winch, swinging boom (grapple), and single-function arch (grapple). Each was modeled and simulated under various conditions. The dynamic model of the skidder can be used to analyze its drawbar pull capability and lateral stability with various log weights and soil types on steep slopes. Validation of this model is needed later.
Technical Paper

Dependence of Fuel-Air Mixing Characteristics on Injection Timing in an Early-Injection Diesel Engine

2002-03-04
2002-01-0944
In recent years, there has been an interest in early-injection Diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to top-dead-center (TDC) compared to standard Diesel engines. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency. Diesel engines in which a homogeneous mixture is achieved close to TDC are known as Homogenous Charge Compression Ignition (HCCI) engines. PREmixed lean DIesel Combustion (PREDIC) engines in which the start of fuel injection is considerably advanced in comparison with that of the standard Diesel engine is an attempt to achieve a mode of operation close to HCCI. Earlier studies have shown that in a PREDIC engine, the fuel injection timing affects the mixture formation and hence influences combustion and pollutant formation.
Technical Paper

An Evaluation of a Composite Model for Predicting Drop-Drop Collision Outcomes in Multidimensional Spray Computations

2002-03-04
2002-01-0943
The standard model for predicting the outcome of drop-drop collisions in sprays is one developed based on measurements in rain drops under atmospheric pressure conditions. This model includes the possible outcomes of grazing collisions and coalescence. Recent measurements with hydrocarbon drops and at higher pressure (up to 12 bar) indicate the possibility of additional outcomes: bounce, reflexive separation and drop shattering. The measurements also indicate that the Weber number range over which bounce occurs is dependent on the gas pressure. The probability of a drop-drop collision resulting in bounce increases with gas pressure. A composite model that includes all these outcomes as possibilities is employed to carry out computations in a constant volume chamber and in a Diesel engine. A sub-model for bounce that includes the pressure effects is also part of the composite model.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Effects of Window Seal Mechanical Properties on Vehicle Interior Noise

2003-05-05
2003-01-1703
One dominant “wind noise” generating mechanism in road vehicles is the interaction between turbulent flows and flexible structures which include side glass windows. In this study, the effects of seal mechanical properties on the sound generated from flow-induced vibration of side glass windows were investigated. The primary goal was to assess the influence of seal support properties on the noise generated from a plate. Two different models to calculate the optimal support stiffness of the seal that minimizes the velocity response are presented. The results show that both the velocity response and the sound radiation are strongly influenced by dissipation of vibration energy at the edges. It is demonstrate that support tuning can yield significant noise and vibration reduction.
Technical Paper

Effects of Geometric Parameters on the Sound Transmission Characteristic of Bulb Seals

2003-05-05
2003-01-1701
Sound transmission through door and window sealing systems is one important contributor to vehicle interior noise. The noise generation mechanism involves the vibration of the seal due to the unsteady wall pressures associated with the turbulent flow over the vehicle. For bulb seals, sound transmission through the seal is governed by the resonance of the seal membranes and the air cavity within the bulb (the so-called mass-air-mass resonance). The objective of this study was to develop a finite element (FE) model to predict the sound transmission loss of elastomeric bulb seals. The model was then exercized to perform a parametric study of the influence of seveal seal design parameters. The results suggest that the sound transmission loss increases as the membrane thicknesses and/or the separation distance between the two seal walls are increased. The addition of additional internal “webs” was found to have adverse effects on the sound barrier performance.
Technical Paper

A Wall-Modified Flamelet Model for Diesel Combustion

2004-03-08
2004-01-0103
In this paper, a wall-modified interactive flamelet model is developed for improving the modeling of Diesel combustion. The objective is to include the effects of wall heat loss on the transient flame structure. The essential idea is to compute several flamelets with several representative enthalpy defects which account for wall heat loss. Then, the averaged flamelet profile can be obtained through a linear fit between the flamelets according to the enthalpy defect of the local gas which results from the wall heat loss. The enthalpy defect is estimated as the difference between the enthalpy in a flamelet without wall heat loss, which would correspond to the enthalpy in the gas without wall heat loss, and the gas with wall heat loss. The improved model is applied to model combustion in a Diesel engine. In the application, two flamelets, one without wall heat loss and one with wall heat loss, are considered.
Journal Article

Prechamber Hot Jet Ignition of Ultra-Lean H2/Air Mixtures: Effect of Supersonic Jets and Combustion Instability

2016-04-05
2016-01-0795
An experiment has been developed to investigate the ignition characteristics of ultra-lean premixed H2/air mixtures by a supersonic hot jet. The hot jet is generated by combustion of a stoichiometric mixture in a small prechamber. The apparatus adopted a dual-chamber design in which a small-volume (1% of the main chamber by volume) prechamber was installed within a large-volume main chamber. A small orifice (nozzle) connects the two chambers. Spark initiated combustion inside the prechamber causes a pressure rise and pushes the gases though the nozzle, resulting in a hot jet that would ignite the lean mixture in the main chamber. Simultaneous high-speed Schlieren photography and OH* Chemiluminescence were applied to visualize the jet penetration and the ignition processes inside the main chamber. Hot Wire Pyrometry (HWP) was used to measure temperature distribution of the transient hot jet.
Journal Article

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

2017-03-28
2017-01-0575
The basic idea behind large-eddy simulation (LES) is to accurately resolve the large energy-containing scales and to use subgrid-scale (SGS) models for the smaller scales. The accuracy of LES can be significantly impacted by the numerical discretization schemes and the choice of the SGS model. This work investigates the accuracy of low-order LES codes in the simulation of a turbulent round jet which is representative of fuel jets in engines. The turbulent jet studied is isothermal with a Reynolds number of 6800. It is simulated using Converge, which is second-order accurate in space and first-order in time, and FLEDS, developed at Purdue University, which is sixth-order accurate in space and fourth-order in time. The high-order code requires the resolution of acoustic time-scales and hence is approximately 10 times more expensive than the low-order code.
Technical Paper

THE EFFECT OF PROPLETS AND BI-BLADES ON THE PERFORMANCE AND NOISE OF PROPELLERS

1981-02-01
810600
A analytical technique for predicting the aerodynamic performance of propellers with tip devices (proplets) using vortex lattice method shows that the ideal efficiency of a fixed diameter propeller can be improved by 1-5%. By suitable orientation and sweep of the proplet, the noise analysis method presented predicts that propellers with tip devices will have approximately the same noise as propellers without tip devices. Therefore proplets can be added to a fixed diameter propeller to improve the efficiency with no increase in noise or the noise may be reduced by decreasing the diameter with no loss in aerodynamic efficiency.
Technical Paper

The Analysis of Counter-Rotating Propeller Systems

1985-04-01
850869
A vortex lattice method for the aerodynamic analysis of counter-rotation propellers was developed. This model along with an unsteady Sears analysis for correcting the quasi-steady loadings that are obtained from the vortex lattice model were used to predict the performance of counter-rotation propeller systems. The method developed shows good correlation with experimental results. The investigation into the unsteady loadings on each of the propellers indicates that significant variations in loading occur due to the unsteady flow and due to the propeller blade passage. These variations were found to be as high as 17 percent of the mean value. The parametric studies that were performed indicate that reducing the rear propeller's diameter or rotational speed results in a loss of efficiency.
Technical Paper

Swirl-Spray Interactions in a Diesel Engine

2001-03-05
2001-01-0996
Swirl in Diesel engines is known to be an important parameter that affects the mixing of the fuel jets, heat release, emissions, and overall engine performance. The changes may be brought about through interactions of the swirling flow field with the spray and through modifications of the flow field. The purpose of this paper is to investigate the interaction of the swirl with sprays in a Diesel engine through a computational study. A multi-dimensional model for flows, sprays, and combustion in engines is employed. Results from computations are reported with varying levels of swirl and initial turbulence in two typical Diesel engine geometries. It is shown that there is an optimal level of swirl for each geometry that results from a balance between increased jet surface area and, hence, mixing rates and utilization of air in the chamber.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Journal Article

A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet

2017-10-05
2017-01-9284
Gas engines often utilize a small-volume pre-chamber in which fuel is injected at near stoichiometric condition to produce a hot turbulent jet which then ignites the lean mixture in the main chamber. Hot jet ignition has several advantages over traditional spark ignition, e.g., more reliable ignition of extra-lean mixtures and more surface area for ignition resulting in faster burning and improved combustion burn time. Our previous experimental results show that supersonic jets could extend the lean flammability limit of fuel/air mixtures in the main chamber in comparison to subsonic jets. The present paper investigated the characteristics of supersonic hot jets generated by combustion of stoichiometric H2/air in a pre-chamber to understand the ignition mechanism of ultra-lean mixtures by supersonic hot jets.
X