Refine Your Search

Topic

Search Results

Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

A Novel Suspended Liner Test Apparatus for Friction and Side Force Measurement with Corresponding Modeling

2006-11-13
2006-32-0041
An experimental apparatus and a numerical model have been designed and developed to examine the lubrication condition and frictional losses at the piston and cylinder interface. The experimental apparatus utilizes components from a single cylinder, ten horsepower engine in a novel suspended liner arrangement. The test rig has been specifically designed to reduce the number of operating variables while utilizing actual components and geometry. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with experimental measurements and provide further insight into the sources of frictional losses. The results demonstrate the effects of speed and viscosity on the overall friction losses at the piston and cylinder liner interface. Comparisons between the experimental and analytical results show good agreement.
Technical Paper

Correlating Dynamic Pressure Signal Features to Diesel Particulate Filter Load

2007-04-16
2007-01-0333
The firing frequency components of the dynamic diesel particulate filter pressure signals carry significant information about the particulate load. Specifically, the normalized magnitude and relative phase of the firing frequency components exhibit clear dependence on the particulate load in a filter. Further, the test-to-test variation and back-to-back repeatability in this work was better for the dynamic pressure signal features than for the mean value pressure drop. This work provides a promising extension or alternative to the mean value pressure drop correlation to particulate load through Darcy's Law. The results may be particularly useful for filter monitoring and control.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 2: Comparing Numerical Model and Test Results

2001-03-05
2001-01-0043
This paper presents the continuation of the modeling work described in a companion paper “Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification” by the same authors. That paper discussed a dynamic test procedure and an optimization methodology to identify and model an elastomeric mount as a non-linear lumped parameter structure. This paper discusses a numerical modeling methodology to confirm or improve the agreement between the dynamic test results and the input-output relationship of the analytical model generated in the companion paper. In this paper, the model developed in the companion paper and the model parameters are input into a dynamic simulation model using a commercial simulation package. The model is then run to produce the numerical force-versus-displacement (F-x) curves of the mount. The numerical F-x curves are compared with the F-x curves obtained from the experiments.
Technical Paper

An Evaluation of a Composite Model for Predicting Drop-Drop Collision Outcomes in Multidimensional Spray Computations

2002-03-04
2002-01-0943
The standard model for predicting the outcome of drop-drop collisions in sprays is one developed based on measurements in rain drops under atmospheric pressure conditions. This model includes the possible outcomes of grazing collisions and coalescence. Recent measurements with hydrocarbon drops and at higher pressure (up to 12 bar) indicate the possibility of additional outcomes: bounce, reflexive separation and drop shattering. The measurements also indicate that the Weber number range over which bounce occurs is dependent on the gas pressure. The probability of a drop-drop collision resulting in bounce increases with gas pressure. A composite model that includes all these outcomes as possibilities is employed to carry out computations in a constant volume chamber and in a Diesel engine. A sub-model for bounce that includes the pressure effects is also part of the composite model.
Technical Paper

Continued Drive Signal Development for the Carbon Nanotube Thermoacoustic Loudspeaker Using Techniques Derived from the Hearing Aid Industry

2017-06-05
2017-01-1895
Compared to moving coil loudspeakers, carbon nanotube (CNT) loudspeakers are extremely lightweight and are capable of creating sound over a broad frequency range (1 Hz to 100 kHz). The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient and nonlinear. Signal processing techniques are one option that may help counteract these concerns. Previous studies have evaluated a hybrid efficiency metric, the ratio of the sound pressure level at a single point to the input electrical power. True efficiency is the ratio of output acoustic power to the input electrical power. True efficiency data are presented for two new drive signal processing techniques borrowed from the hearing aid industry. Spectral envelope decimation of an AC signal operates in the frequency domain (FCAC) and dynamic linear frequency compression of an AC signal operates in the time domain (TCAC). Each type of processing affects the true efficiency differently.
Technical Paper

A Desktop Procedure for Measuring the Transmission Loss of Automotive Door Seals

2017-06-05
2017-01-1760
Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

Contribution of Sound to Perception of CVT Performance

2006-04-03
2006-01-0813
Three experiments examined the contribution of sound to the perception of performance using audio recordings made on a test track with a vehicle equipped with a continuously variable transmission (CVT) performing four different maneuvers with four transmission settings. Subjects rated the recordings based on their perceptions of power & performance, pleasantness, smoothness, and loudness. On the track, the low calibration setting (including a flat ratio schedule) had been rated higher for power & performance than the high calibration setting (including a rising ratio schedule). In Experiment 1, where subjects were unaware of the maneuver performed, there was no advantage for the low calibration setting; in Experiment 2, where subjects were aware of the maneuver, the power & performance ratings were opposite to those obtained on the test track. In Experiment 3, drivers of performance cars rated the recordings as more pleasant and smoother than did drivers of other vehicles.
Technical Paper

Dead Pedal and the Perception of Performance of a Continuously Variable Transmission

2005-04-11
2005-01-1596
The flat ratio schedule that maximizes the performance advantages of a CVT may also be a source of consumer resistance. A previous investigation of consumer perception did obtain maximum engine power and pickup ratings using the flat-ratio schedule, but some data were missing due to traffic conditions on public roads. This paper is a report of an experiment conducted at the Dearborn Proving Ground to confirm the flat-ratio-schedule advantage for engine power and pickup ratings, and to investigate further the effects of varying Dead Pedal. Driver ratings of engine power and pickup replicated the earlier findings, and an overall advantage of low Dead Pedal was found for ratings of engine power and pickup and for transmission smoothness.
Technical Paper

Analysis of Widespread Fatigue Damage in Lap Joints

1999-04-20
1999-01-1586
This paper describes research to analyze widespread fatigue damage in lap joints. The particular objective is to determine when large numbers of small cracks could degrade the joint strength to an unacceptable level. A deterministic model is described to compute fatigue crack growth and residual strength of riveted panels that contain multiple cracks. Fatigue crack growth tests conducted to evaluate the predictive model are summarized, and indicate good agreement between experimental and numerical results. Monte Carlo simulations are then performed to determine the influence of statistical variability on various analysis parameters.
Technical Paper

Conditions In Which Vaporizing Fuel Drops Reach A Critical State In A Diesel Engine

1999-03-01
1999-01-0511
It has been shown recently that the maximum penetration of the liquid phase in a vaporizing Diesel spray is relatively short compared to the overall jet penetration and that this maximum is reached in 2 - 4°CA after start of injection. This implies that the drops that are formed by atomization vaporize in a short characteristic time and length relative to other physical processes. This paper addresses an important question related to this observation: Are the vaporizing fuel drops disappearing because they reach a critical state? Related to this question is another: Under what conditions will vaporizing fuel drops reach a critical state in a Diesel engine? Single drops of pure component liquid hydrocarbons and their mixtures vaporizing in quiescent nitrogen or carbon dioxide gas environments with ambient pressures and temperatures at values typically found in Diesel engines are examined.
Technical Paper

Multi-Objective Optimization of Gerotor Port Design by Genetic Algorithm with Considerations on Kinematic vs. Actual Flow Ripple

2019-04-02
2019-01-0827
The kinematic flow ripple for gerotor pumps is often used as a metric for comparison among different gearsets. However, compressibility, internal leakages, and throttling effects have an impact on the performance of the pump and cause the real flow ripple to deviate from the kinematic flow ripple. To counter this phenomenon, the ports can be designed to account for fluid effects to reduce the outlet flow ripple, internal pressure peaks, and localized cavitation due to throttling while simultaneously improving the volumetric efficiency. The design of the ports is typically heuristic, but a more advanced approach can be to use a numerical fluid model for virtual prototyping. In this work, a multi-objective optimization by genetic algorithm using an experimentally validated, lumped parameter, fluid-dynamic model is used to design the port geometry.
Technical Paper

Recent Developments in a Novel Blended Hydraulic Hybrid Transmission

2014-09-30
2014-01-2399
A novel Blended Hydraulic Hybrid transmission architecture is presented in this paper with benefits over conventional designs. This novel configuration combines elements of a hydrostatic transmission, a parallel hybrid, and a selectively connectable high pressure accumulator using passive and actively controlled logic elements. Losses are reduced compared to existing series hybrid transmissions by enabling the units to operate efficiently at pressures below the current high pressure accumulator's pressure. A selective connection to the high pressure accumulator also allows for higher system precharge which increases regenerative braking torque and energy capture with little determent to system efficiency. Finally operating as a hydrostatic transmission increases transmission stiffness (i.e. driver response) and may improve driver feel in certain situations when compared to a conventional series hybrid transmission.
X