Refine Your Search

Topic

Search Results

Journal Article

Adaptive Robust Motion Control of an Excavator Hydraulic Hybrid Swing Drive

2015-09-29
2015-01-2853
Over the last decade, a number of hybrid architectures have been proposed with the main goal of minimizing energy consumption of off-highway vehicles. One of the architecture subsets which has progressively gained attention is hydraulic hybrids for earth-moving equipment. Among these architectures, hydraulic hybrids with secondary-controlled drives have proven to be a reliable, implementable, and highly efficient alternative with the potential for up to 50% engine downsizing when applied to excavator truck-loading cycles. Multi-input multi-output (MIMO) robust linear control strategies have been developed by the authors' group with notable improvements on the control of the state of charge of the high pressure accumulator. Nonetheless, the challenge remains to improve the actuator position and velocity tracking.
Technical Paper

Effects of a Probability-Based Green Light Optimized Speed Advisory on Dilemma Zone Exposure

2020-04-14
2020-01-0116
Green Light Optimized Speed Advisory (GLOSA) systems have the objective of providing a recommended speed to arrive at a traffic signal during the green phase of the cycle. GLOSA has been shown to decrease travel time, fuel consumption, and carbon emissions; simultaneously, it has been demonstrated to increase driver and passenger comfort. Few studies have been conducted using historical cycle-by-cycle phase probabilities to assess the performance of a speed advisory capable of recommending a speed for various traffic signal operating modes (fixed-time, semi-actuated, and fully-actuated). In this study, a GLOSA system based on phase probability is proposed. The probability is calculated prior to each trip from a previous week’s, same time-of-day (TOD) and day-of-week (DOW) period, traffic signal controller high-resolution event data.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Wall Interactions of Hydrogen Flames Compared with Hydrocarbon Flames

2007-04-16
2007-01-1466
This paper provides a comparison of wall heat fluxes and quenching distances as one-dimensional hydrogen and heptane flames impinge head-on onto a wall. It is shown that the quenching distances for stoichiometric H2/air and C7H16/air flames under the specified conditions of this study are about the same, but the wall heat flux for the H2/air flames is approximately a factor of two greater. For lean H2/air mixtures, the quenching distance increases substantially and the wall heat flux decreases. To understand more clearly the interplay of flame speed, temperature, thermal diffusivity, and surface kinetics on the results, studies of H2/O2 flames are also carried out.
Technical Paper

Regenerative Hydraulic Topographies using High Speed Valves

2009-10-06
2009-01-2847
This paper presents hydraulic topographies using a network of valves to achieve better energy efficiency, reliability, and performance. The Topography with Integrated Energy Recovery (TIER) system allows the valves and actuators to reconfigure so that flow from assistive loads on actuators can be used to move actuators with resistive loads. Many variations are possible, including using multiple valves with either a single pump/motor or with multiple pump/motors. When multiple pump/motors are used, units of different displacements can be chosen such that units are controlled to minimize time operating at low displacement, thus increasing overall system efficiency. Other variations include configurations allowing open loop or closed loop pump/motors to be used, the use of fixed displacement pump/motors, or the ability to store energy in an accumulator. This paper gives a system level overview and summarizes the hydraulic systems using the TIER approach.
Technical Paper

Stability Analysis of a DC Power Electronics Based Distribution System

2002-10-29
2002-01-3184
This paper illustrates the application of the generalized immittance space approach to the analysis of multi-bus interconnected power electronics based power distribution system. The paper sets forth the basic classifications of power converters in regard to stability analysis, a set of network reduction transformations, and illustrates the use of these reductions in order to analyze the stability of a zonal dc distribution system.
Technical Paper

Analysis and Simulation of a UAV Power System

2002-10-29
2002-01-3175
Models for the components of a long-duration UAV power system are set forth. The models include the solar array, solar array power converter, fuel cell and electrolyzer system and corresponding power converter, and propulsion load. Based on these models, a power management control is derived, which when coupled with the component models, are used to simulate power system performance during start-up, through a day-night cycle, and through a solar eclipse.
Technical Paper

Polytopic Modeling and Lyapunov Stability Analysis of Power Electronics Systems

2002-10-29
2002-01-3203
Power electronics based power distribution systems are inherently nonlinear often behaving as constant power loads. Stability analysis of such systems typically is limited to local behavior. Herein polytopic modeling techniques are presented. Classification of polytopic model equilibrium points is made and methods of determining uniform asymptotic stability are presented.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Novel Mode-Switching Hydraulic Hybrid - A Study of the Architecture and Control

2016-09-27
2016-01-8111
With the need for improvement in the fuel economy along with reduction in emissions due to stringent regulations, powertrain hybridization has become the focal point of research for the automotive sector. Hydraulic hybrids have progressively gained acceptance due to their high power density and low component costs relative to their electric counterpart and many different architectures have been proposed and implemented on both on and off-highway applications. The most commonly used architecture is the series hybrid which offers great flexibility for implementation of power management strategies. But the direct connection of the high pressure accumulator to the system often results in operation of the hydraulic units in high pressure and low displacement mode. However, in this operating mode the hydraulic units are highly inefficient. Also, the accumulator renders the system highly compliant and makes the response of the transmission sluggish.
Technical Paper

Continued Drive Signal Development for the Carbon Nanotube Thermoacoustic Loudspeaker Using Techniques Derived from the Hearing Aid Industry

2017-06-05
2017-01-1895
Compared to moving coil loudspeakers, carbon nanotube (CNT) loudspeakers are extremely lightweight and are capable of creating sound over a broad frequency range (1 Hz to 100 kHz). The thermoacoustic effect that allows for this non-vibrating sound source is naturally inefficient and nonlinear. Signal processing techniques are one option that may help counteract these concerns. Previous studies have evaluated a hybrid efficiency metric, the ratio of the sound pressure level at a single point to the input electrical power. True efficiency is the ratio of output acoustic power to the input electrical power. True efficiency data are presented for two new drive signal processing techniques borrowed from the hearing aid industry. Spectral envelope decimation of an AC signal operates in the frequency domain (FCAC) and dynamic linear frequency compression of an AC signal operates in the time domain (TCAC). Each type of processing affects the true efficiency differently.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Designing a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1763
The Purdue University EcoMakers team has completed its first year of the EcoCAR 2 Competition, in which the team has designed a Parallel-Through-the-Road Plug-in Hybrid Electric Vehicle that meets the performance requirements of a mid-size sedan for the US market, maintaining capability, utility and consumer satisfaction while minimizing emissions, energy consumption and petroleum use. The team is utilizing a 1.7L 14 CI engine utilizing B20 (20% biodiesel, 80% diesel), a 16.2 kW-hr A123 battery pack, and a Magna E-Drive motor to power the front and rear wheels. This will allow the vehicle to have a charge-depleting range of 75 miles. The first year was focused on the simulation of the vehicle, in which the team completed the controls, packaging and integration, and electrical plans for the vehicle to be used and implemented in years two and three of the competition.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Inductive or Magnetic Recharging for Small UAVs

2012-10-22
2012-01-2115
We developed a wireless, contact free power transfer mechanism that is safer and robust to imperfect alignment on landing at the base station and that avoid trips back to the launch sites for recharging off power lines. A magnetic field is created using inductor coils on both the transmitting and receiving sides. We use small induction coils around the UAV to increase efficiency and decrease interference. By locating several of these small inductive coils around our quad-rotor UAV, faster recharging is accomplished in comparison to the use of just one coil. In addition, more coils permit larger voltages for more efficient power transfers. On the base station, several folding robotic arms will be used to realign the receiver coils over the transmitter coils. After adequate recharging as measured by battery voltages or power consumption at the base station, the UAV sends a signal to the base station to open the dome to fly away.
Technical Paper

Externally Electro-Pneumatically Shifting System (E.P.S) to Install on Manual Transmissions

2012-09-24
2012-01-1994
In this study, an Electro-pneumatic shifting system (E.P.S) has been designed to install on manual transmissions to make the selecting and shifting process faster and more reliable compared to manual systems. Shifting mechanism of a six speed gear box has been improved by using two tandem pneumatic cylinders, position sensors, pneumatic valves, and a controlling board based on AVR microcontroller. The central processing unit uses an electronic control system to provide the optimized operation of shift mechanism. This system can be easily adjusted in order to install externally on manual transmission systems without any changes on housing and transmission shift links.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

System Level Design and Initial Equivalent System Mass Analysis of a Solid-Phase Thermophilic Aerobic Rector for Advanced Life Support Systems

2005-07-11
2005-01-2983
This paper presents a system-level design and initial equivalent systems mass (ESM) analysis for a solid-phase thermophilic aerobic reactor (STAR) system prototype that is designed for a Mars surface mission. STAR is a biological solid waste treatment system that reduces solid waste, neutralizes pathogens, and produces a stabilized product amenable to nutrient reuse and water recovery in a closed life support system. The STAR system is designed for long-duration space missions or long-term remote planetary operations. A system-level design analysis for sizing a STAR process and the subsequent ESM based sensitivity analysis based on a 600-day Mars surface mission with a 6-person crew will be presented. Preliminary ESM sensitivity analysis identified that improving system energy conservation efficiency should be the focus of future research once the fundamental STAR process development has matured.
Technical Paper

Equivalent System Mass (ESM) Estimates for Commercially Available, Small-Scale Food Processing Equipment

2004-07-19
2004-01-2526
One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques.
X