Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessment of Absorbers in Normal-Incidence Four- Microphone Transmission-Loss Systems to Measure Effectiveness of Materials in Lateral-Flow Configurations of Filled or Partially Filled Cavities

2007-05-15
2007-01-2190
The four-microphone standing wave tube system has proven useful for measuring the absorption and transmission loss of various fibrous and non-fibrous absorbers. The system is fast, repeatable, accurate and compact. This paper discusses the advantages of the four-microphone system for measuring the transmission loss in lateral-flow absorber systems. The original four-microphone round impedance tube system and the migration to a four-microphone square tube system are discussed. The four-microphone square tube system allows effective study of filled and partially filled cavities.
Technical Paper

Structural Damping by the Use of Fibrous Materials

2015-06-15
2015-01-2239
Because of the increasing concern with vehicle weight, there is an interest in lightweight materials that can serve several functions at once. Here we consider the vibration damping performance provided by an “acoustical” material (i.e., a fibrous layer that would normally be used for airborne noise control). It has been previously established that the vibration of panel structures creates a non-propagating nearfield in the region close to the panel. In that region, there is an oscillatory, incompressible fluid flow parallel to the panel whose strength decays exponentially with distance from the panel. When a fibrous medium is placed close to the panel in the region where the oscillatory nearfield is significant, energy is dissipated by the viscous interaction of the flow and the fibers, and hence the panel vibration is damped. The degree of panel damping is then proportional to the energy removed from the nearfield by the viscous interaction with the fibrous medium.
X