Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Integrated In-Cylinder / CHT Methodology for the Simulation of the Engine Thermal Field: An Application to High Performance Turbocharged DISI Engines

2016-04-05
2016-01-0578
New SI engine generations are characterized by a simultaneous reduction of the engine displacement and an increase of the brake power; such targets are achieved through the adoption of several techniques such as turbocharging, direct fuel injection, variable valve timing and variable port lengths. This design approach, called “downsizing”, leads to a marked increase in the thermal loads acting on the engine components, in particular on those facing the combustion chamber. Hence, an accurate evaluation of the thermal field is of primary importance in order to avoid mechanical failures. Moreover, the correct evaluation of the temperature distribution improves the prediction of pointwise abnormal combustion onset.
Technical Paper

Effects of Fuel-Induced Piston-Cooling and Fuel Formulation on the Formation of Fuel Deposits and Mixture Stratification in a GDI Engine

2015-04-14
2015-01-0394
Fuel deposits in DISI engines promote unburnt hydrocarbon and soot formation: due to the increasingly stringent emission regulations (EU6 and forthcoming), it is necessary to deeply analyze and well-understand the complex physical mechanisms promoting fuel deposit formation. The task is not trivial, due to the coexistence of mutually interacting factors, such as complex moving geometries, influencing both impact angle and velocity, and time-dependent wall temperatures. The experimental characterization of actual engine conditions on transparent combustion chambers is limited to highly specialized research laboratories; therefore, 3D-CFD simulations can be a fundamental tool to investigate and understand the complex interplay of all the mentioned factors. The aim is pursued in this study by means of full-cycle simulations accounting for instantaneous fuel/piston thermal interaction and actual fuel characteristics.
X