Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Permanent Magnet Starter-Generator for Aircraft Application

This paper describes a high-speed electrical machine for an aircraft starter-generator. A surface mounted permanent magnet machine is designed to have minimal rotor losses and a novel cooling system for the stator. An inner stator sleeve is adopted to allow for a flooded stator whilst minimizing rotor windage losses. Different slot-pole combinations are compared in view of attaining an optimal combination that provides minimum losses whilst satisfying the electromagnetic, mechanical and thermal constraints.
Technical Paper

Nonlinear Slender Beam-Wise Schemes for Structural Behavior of Flexible UAS Wings

The innovative highly flexible wings made of extremely light structures, yet still capable of carrying a considerable amount of non- structural weights, requires significant effort in structural simulations. The complexity involved in such design demands for simplified mathematical tools based on appropriate nonlinear structural schemes combined with reduced order models capable of predicting accurately their aero-structural behaviour. The model presented in this paper is based on a consistent nonlinear beam-wise scheme, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are expanded up to the third order and can be used to explore the effect of static deflection imposed by external trim, the effect of gust loads and the one of nonlinear aerodynamic stall.
Technical Paper

Updating of an Unmanned Aerial Vehicle Finite Element Model using Experimental Data

In this paper the finite element model of an Unmanned Aerial Vehicle is updated by using experimental data coming from a standard ground vibration test in order to improve the numerical-experimental correlation. A sensitivity-based updating methodology that iteratively minimizes a residual vector, defined on the modal parameters (e.g. natural frequencies and mode shapes), is considered to identify the unknown values of the updating parameters. The structure under investigation is the Clarkson University Golden Eagle UAV. An initial numerical model of the structure is obtained by assembling the individual components previously updated which included wings, fuselage, horizontal tail, vertical tails and tail booms. As a result the identification procedure shifts its focus on the joints between UAV elements which could not be modeled accurately in earlier investigations.
Technical Paper

Unsteady Aerodynamics of a 3D Wing Hosting Synthetic Jet Actuators

The implementation of Synthetic Jet Actuators (SJAs) on Unmanned Aerial Vehicles (UAVs) provides a safe test-bed for analysis of improved performance, in the hope of certification of this technology on commercial aircraft in the future. The use of high resolution numerical methods (i.e. CFD) to capture the details of the effects of SJAs on flows and on the hosting lifting surface are computationally expensive and time-consuming, which renders them ineffective for use in real-time flow control implementations. Suitable alternatives include the use of Reduced Order Models (ROMs) to capture the lower resolution overall effects of the jets on the flow and the hosting structure. This research paper analyses the effects of SJAs on aircraft wings using a ROM for the purpose of determining the unsteady aerodynamic forces modified by the presence of the SJAs. The model developed is a 3D unsteady panel code where the jets are represented by source panels.
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
Technical Paper

Aeroelastic Behaviour of Flexible Wings Carrying Distributed Electric Propulsion Systems

An accurate aeroelastic assessment of powered HALE aircraft is of paramount importance considering that their behaviour contrasts the one of conventional aircraft mainly due to the use of high aspect-ratio wings with distributed propulsion systems. This particular configuration shows strong dependency of the wing natural frequencies to the propulsion distribution and operating conditions. Numerical and experimental investigations are carried out to better understand the behaviour of flexible wings, focusing on the effect of distributed electric propulsion systems. Several configurations are investigated, including a single propulsion system using an engine pod (a weight with embedded electric motor, a propeller, and the wing-attached structure) installed at selected spanwise positions, and configurations with two and three propellers.
Technical Paper

Development of a Small-Scale Aeroacoustic Open Jet, Open Return Wind Tunnel for Cavity Noise and Component Testing

A small-scale aeroacoustic wind tunnel has been designed and built to investigate tonal cavity noise in the frequency range applicable to passenger vehicles; 1 - 16 kHz. The tunnel is required for testing associated with an investigation into tonal cavity noise on passenger-vehicle wing mirrors. It was designed to operate in the low subsonic speed range (60 - 140 km/h) with a nozzle exit cross-sectional area of 0.02 m2 and a 4:1 aspect ratio. The design was intended to achieve a smooth, quiet flow facility. In this paper the design process is summarised and the factors leading to particular design decisions are detailed. An initial evaluation has shown that only minimal changes are required to achieve very smooth, even flow at the nozzle exit at all required test speeds. The acoustic design needs further work as there is a significant amount of flow noise at the nozzle exit between 1 and 13 kHz.
Technical Paper

Pressure Fluctuations on Automotive Rear View Mirrors

The function of a rear view mirror is a determining factor in its shape - resulting in a flat rear mirrored face. The resulting bluff body generates unsteady base pressures which generate unsteady forces, leading to movement of the mirror surface and potential image blurring. The objective of this paper was to experimentally determine the fluctuating base pressure on a standard and modified mirror. Half a full-size vehicle was utilised, fixed to the side wall of a wind tunnel. A dynamically responsive multi channel pressure system was used to record the pressures. The modification to the mirror consisted of a series of extensions to the mirror rim, to see if this method would attenuate the fluctuating base pressures. It was found that increasing the length of the extension changed the pressure pattern across the face, and the over all magnitude of the fluctuations reduced with increasing length of extension. It was recommended to further the work via phase measurements.
Technical Paper

On The Causes of Image Blurring in External Rear View Mirrors

Effective rear view vision from external mirrors is compromised at high speed due to rotational vibration of the mirror glass. Possible causes of the mirror vibration are reviewed, including road inputs from the vehicle body and a variety of aerodynamic inputs. The latter included vibrations of the entire vehicle body, vibrations of the mirror “shell”, the turbulent flow field due to the A-pillar vortex (and to a lesser extent the approach flow) and base pressure fluctuations. Experiments are described that attempt to understand the relative influence of the causes of vibration, including road and tunnel tests with mirrors instrumented with micro accelerometers. At low frequencies, road inputs predominate, but some occur at such low frequencies that the human eye can track the moving image. At frequencies above about 20Hz the results indicate that at high speeds aerodynamics play a dominant role.
Technical Paper

Design, Development and Integration of a Wing-Morphing, Bimodal Unmanned Vehicle

This paper relates to the design and development of a multi-modal UAV capable of aerial flight and underwater propulsion. A novel hybrid propulsion system has been manufactured and tested. Consisting of folding blades, the propeller has been optimized for propulsion both in air and water. The critical water to air transition phase is achieved by an additional impulsive thruster powered by a C02 cartridge. To decrease the drag in underwater cruise and reduce the potential damage when the vehicle impacts the water, a morphing wing has been developed. This consists of foam-carbon fiber lay-up constructed wings in a variable sweep configuration. The actuation of the sweep is achieved by linear servos mounted on the sleeve shaped spar. An integrated prototype is constructed, using an unconventional, anhedral horizontal stabilizers to allow clearance for the morphing wing.
Technical Paper

Dynamic Stiffness Investigation of an Automotive Body-in-White by Utilizing Response Surface Methodology

Noise, vibration, and harshness (NVH) attribute is needed to be included in the vehicle structure design since improving the NVH characteristics enhances the ride quality experienced by the occupants. In this regard, an efficient method was proposed to investigate the structural dynamic response of an automotive body considering low-frequency NVH performances. Moreover, the improvement of an automotive structure under the constraint of NVH behavior was investigated by using the design of experiments (DOEs) method. The DOEs methodology was for screening of the design space and generating approximation models. Here, the thicknesses of panels consisting of a body-in-white (BIW) of an automotive were employed as design variables for optimization, whose objective was to increase the first torsional and bending natural frequencies. Central composite design (CCD) for DOEs sampling and response surface methodology (RSM) were employed to optimize the dynamic stiffness.
Technical Paper

Transient Wind Noise

Wind noise sources are described including those from the A-pillar region, cavities and bluff bodies. Hydrodynamic pressure fluctuations results from flow separations (in such areas as the A-pillars and mirrors) that generate relatively broad band in-cabin noise. The influence on local radii of the A-pillar is outlined and shown to be a dominant factor in determining hydrodynamic pressure fluctuations in the side-glass regions. Small cavities (eg. styling or water management channels on the mirror casing) generate high-frequency acoustic tones that can also be heard in the cabin and an example of tones from a whistling mirror cavity is shown. A spectrogram of in-cabin noise obtained whilst driving in strong winds is used to illustrate the variability of noise that can be heard on-road and to consider the influence of the relative wind speed.