Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Permanent Magnet Starter-Generator for Aircraft Application

2014-09-16
2014-01-2157
This paper describes a high-speed electrical machine for an aircraft starter-generator. A surface mounted permanent magnet machine is designed to have minimal rotor losses and a novel cooling system for the stator. An inner stator sleeve is adopted to allow for a flooded stator whilst minimizing rotor windage losses. Different slot-pole combinations are compared in view of attaining an optimal combination that provides minimum losses whilst satisfying the electromagnetic, mechanical and thermal constraints.
Technical Paper

Updating of an Unmanned Aerial Vehicle Finite Element Model using Experimental Data

2015-09-15
2015-01-2460
In this paper the finite element model of an Unmanned Aerial Vehicle is updated by using experimental data coming from a standard ground vibration test in order to improve the numerical-experimental correlation. A sensitivity-based updating methodology that iteratively minimizes a residual vector, defined on the modal parameters (e.g. natural frequencies and mode shapes), is considered to identify the unknown values of the updating parameters. The structure under investigation is the Clarkson University Golden Eagle UAV. An initial numerical model of the structure is obtained by assembling the individual components previously updated which included wings, fuselage, horizontal tail, vertical tails and tail booms. As a result the identification procedure shifts its focus on the joints between UAV elements which could not be modeled accurately in earlier investigations.
Technical Paper

Low-Cost RPAS Navigation and Guidance System using Square Root Unscented Kalman Filter

2015-09-15
2015-01-2459
Multi-Sensor Data Fusion (MSDF) techniques involving satellite and inertial-based sensors are widely adopted to improve the navigation solution of a number of mission- and safety-critical tasks. Such integrated Navigation and Guidance Systems (NGS) currently do not meet the required level of performance in all flight phases of small Remotely Piloted Aircraft Systems (RPAS). In this paper an innovative Square Root-Unscented Kalman Filter (SR-UKF) based NGS is presented and compared with a conventional UKF governed design. The presented system architectures adopt state-of-the-art information fusion approach based on a number of low-cost sensors including; Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) and Vision Based Navigation (VBN) sensors.
Technical Paper

Investigation of GNSS Integrity Augmentation Synergies with Unmanned Aircraft Sense-and-Avoid Systems

2015-09-15
2015-01-2456
Global Navigation Satellite Systems (GNSS) can support the development of low-cost and high performance navigation and guidance architectures for Unmanned Aircraft Systems (UAS) and, in conjunction with suitable data link technologies, the provision of Automated Dependent Surveillance (ADS) functionalities for cooperative Sense-and-Avoid (SAA). In non-cooperative SAA, the adoption of GNSS can also provide the key positioning and, in some cases, attitude data (using multiple antennas) required for automated collision avoidance. A key limitation of GNSS for both cooperative (ADS) and non-cooperative applications is represented by the achievable levels of integrity. Therefore, an Avionics Based Integrity Augmentation (ABIA) solution is proposed to support the development of an Integrity-Augmented SAA (IAS) architecture suitable for both cooperative and non-cooperative scenarios.
Technical Paper

A Novel Approach to Cooperative and Non-Cooperative RPAS Detect-and-Avoid

2015-09-15
2015-01-2470
A unified approach to cooperative and non-cooperative Detect-and-Avoid (DAA) is a key enabler for Remotely Piloted Aircraft System (RPAS) to safely and routinely access all classes of airspace. In this paper state-of-the-art cooperative and non-cooperative DAA sensor/system technologies for manned aircraft and RPAS are reviewed and the associated multi-sensor data fusion techniques are discussed. A DAA system architecture is presented based on Boolean Decision Logics (BDL) for selecting non-cooperative and cooperative sensors/systems including both passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B). After elaborating the DAA system processes, the key mathematical models associated with both non-cooperative and cooperative DAA functions are presented.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Technical Paper

Development of a Template Safety Case for Unmanned Aircraft Operations Over Populous Areas

2015-09-15
2015-01-2469
One of the primary hazards associated with the operation of Unmanned Aircraft (UA) is the controlled or uncontrolled impact of the UA with terrain or objects on the terrain (e.g., people or structures). National Aviation Authorities (NAAs) have the responsibility of ensuring that the risks associated with this hazard are managed to an acceptable level. The NAA can mandate a range of technical (e.g., design standards) and operational (e.g., restrictions on flight) regulatory requirements. However, work to develop these regulations for UA is ongoing. Underpinning this rule-making process is a safety case showing how the regulatory requirements put in place ensure that the UA operation is acceptably safe for the given application and environment.
Technical Paper

Unsteady Aerodynamics of a 3D Wing Hosting Synthetic Jet Actuators

2015-09-15
2015-01-2455
The implementation of Synthetic Jet Actuators (SJAs) on Unmanned Aerial Vehicles (UAVs) provides a safe test-bed for analysis of improved performance, in the hope of certification of this technology on commercial aircraft in the future. The use of high resolution numerical methods (i.e. CFD) to capture the details of the effects of SJAs on flows and on the hosting lifting surface are computationally expensive and time-consuming, which renders them ineffective for use in real-time flow control implementations. Suitable alternatives include the use of Reduced Order Models (ROMs) to capture the lower resolution overall effects of the jets on the flow and the hosting structure. This research paper analyses the effects of SJAs on aircraft wings using a ROM for the purpose of determining the unsteady aerodynamic forces modified by the presence of the SJAs. The model developed is a 3D unsteady panel code where the jets are represented by source panels.
Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

Multi-Sensor Data Fusion Techniques for RPAS Detect, Track and Avoid

2015-09-15
2015-01-2475
Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers.
Technical Paper

Automated ATM System Enabling 4DT-Based Operations

2015-09-15
2015-01-2539
As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission.
Technical Paper

CFD Analysis of a Wing-In-Ground-Effect (WIGE) Vehicle

2015-09-15
2015-01-2571
This paper introduces the Seabus SB-8, a new Wing-In-Ground-Effect (WIGE) craft designed for 8 - 10 passengers. The craft will be used for fast transportation across Port Phillip Bay in Melbourne, Australia. With a cruise speed of about 140 km/hr, it can cross the bay in 30 min as compared to 75 min for land transportation. Computational Fluid Dynamics (CFD) analysis was conducted on the design to determine aerodynamic properties at various angles of attack and operating heights. The influence of ground effect was also determined as well as the effect of Centre of Gravity (CG) position on longitudinal stability. Using flow visualization areas of potential flow separation were identified and interactions of wake vortices with different parts of the aircraft were determined. Note that some aspects of the design are proprietary.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
Technical Paper

Aeroelastic Behaviour of Flexible Wings Carrying Distributed Electric Propulsion Systems

2017-09-19
2017-01-2061
An accurate aeroelastic assessment of powered HALE aircraft is of paramount importance considering that their behaviour contrasts the one of conventional aircraft mainly due to the use of high aspect-ratio wings with distributed propulsion systems. This particular configuration shows strong dependency of the wing natural frequencies to the propulsion distribution and operating conditions. Numerical and experimental investigations are carried out to better understand the behaviour of flexible wings, focusing on the effect of distributed electric propulsion systems. Several configurations are investigated, including a single propulsion system using an engine pod (a weight with embedded electric motor, a propeller, and the wing-attached structure) installed at selected spanwise positions, and configurations with two and three propellers.
Technical Paper

Conceptual Control Law Design for Aircraft with Reduced Tail Size

2001-09-11
2001-01-3003
The design of a longitudinal stability augmentation system (SAS) for an aircraft with reduced tail size in the preliminary design phase is presented. Reducing tail size will reduce drag and weight and result in better fuel consumption, but it will reduce the level of stability. A control law is designed to give the aircraft the same stability level as that with the initial tail size. The feedback gains of the control law is computed with the equivalent stability derivative criteria of and CmαCmq . The paper also gives an overview of classical root locus and pole placement method and demonstrates that equivalent stability derivative criteria is suitable for preliminary aircraft design applications. Moreover, the control laws are also synthesized using robust control LQG/LTR which can be elaborated more in the detail design phase.
Technical Paper

Design, Development and Integration of a Wing-Morphing, Bimodal Unmanned Vehicle

2018-10-30
2018-01-1960
This paper relates to the design and development of a multi-modal UAV capable of aerial flight and underwater propulsion. A novel hybrid propulsion system has been manufactured and tested. Consisting of folding blades, the propeller has been optimized for propulsion both in air and water. The critical water to air transition phase is achieved by an additional impulsive thruster powered by a C02 cartridge. To decrease the drag in underwater cruise and reduce the potential damage when the vehicle impacts the water, a morphing wing has been developed. This consists of foam-carbon fiber lay-up constructed wings in a variable sweep configuration. The actuation of the sweep is achieved by linear servos mounted on the sleeve shaped spar. An integrated prototype is constructed, using an unconventional, anhedral horizontal stabilizers to allow clearance for the morphing wing.
Journal Article

Modelling and Evaluation of Aircraft Contrails for 4-Dimensional Trajectory Optimisation

2015-09-15
2015-01-2538
Contrails and aircraft-induced cirrus clouds are reputed being the largest components of aviation-induced global warming, even greater than carbon dioxide (CO2) exhaust emissions by aircraft. This article presents a contrail model algorithm specifically developed to be integrated within a multi-objective flight trajectory optimization software framework. The purpose of the algorithm is to supply to the optimizer a measure of the estimated radiative forcing from the contrails generated by the aircraft while flying a specific trajectory. In order to determine the precise measure, a comprehensive model is employed exploiting the Schmidt-Appleman criterion and ice-supersaturation regions. Additional parameters such as the solar zenith angle, contrail lifetime and spread are also considered.
X