Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Updated Systems for Water Recovery from Humidity Condensate and Urine for the International Space Station

1997-07-14
972559
At the initial phase of the construction of the international space station (ISS) water supply will be provided by the systems located in the Russian segment. The paper reviews the systems for water recovery from humidity condensate and urine to be incorporated in the Russian segment of the ISS. The similar systems have been successfully operated on the Mir space station. The updates aim at enhancing system cost-effectiveness and reliability. The system for water recovery from humidity condensate (WRS-C) features an added assembly for the removal of organic contaminants to be catalytically oxidized in an air/liquid flow at ambient temperature and pressure. The system for water reclamation from urine (WRS-U) incorporates a new distillation subsystem based on vacuum distillation with a multistage rotary distiller and a vapor compression or thermoelectric heat pump. The updating of the WRS-C system will enable an increase in the multifiltration bed's life at least two fold.
Technical Paper

Water Recovery on the International Space Station: The Perspectives of Space Stations' Water Supply Systems

2007-07-09
2007-01-3174
The paper summarizes the six years' experience gained with the ISS water management system during the missions ISS-1 through ISS-14 (since November 2, 2000 through October 31, 2006). The water supply sources, consumption structure and supply balance and balance specifics at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery during space missions and the prospects of regenerative water supply of an interplanetary space station are discussed. The aim of this paper is to summarize the water supply experience and to provide recommendations for a perspective water supply integrated system based on water recovery.
Technical Paper

srv-k Status Aboard the International Space Station During Missions 15 and 16

2008-06-29
2008-01-2191
The paper summarizes the experience gained on the ISS water management system during the missions of ISS-1 through ISS-16 (since November 2 2000, through December 31, 2007). The water supply sources and structure, consumption and supply balance at various phases of space station operation are reviewed. The performance data of the system for water recovery from humidity condensate SRV-K and urine feed and pretreatment system SPK-U in the Russian orbital segment are presented. The key role of water recovery on a board the ISS and the need to supplement the station's water supply hardware with a system for water reclamation from urine, water from a carbon dioxide reduction system and hygiene water is shown.
Technical Paper

Water Recovery and Urine Collection Abord the International Space Station

2003-07-07
2003-01-2622
The paper deals with the performance data of the service module Zvezda water supply and urine collection systems of the International Space Station (ISS) as of December 31, 2002. The water supply and demand balance are analyzed. The data of humidity condensate and recovered water compositions are reviewed. The effective cooperation of the international partners on part of life support is shown.
Technical Paper

Water Recovery and Urine Collection in the Service Module of the International Space Station

2001-07-09
2001-01-2355
The paper deals with the construction and performance data of the service module Zvezda water supply system of the International Space Station (ISS). The performance data at an initial phase of manned station functioning are provided. The data on humidity condensate and recovered water composition are reviewed. The water supply and demand balance are analyzed. The effective cooperation of international partners on part of water supply for the crew is shown.
Technical Paper

Water Recovery and Oxygen Generation by Electrolysis Aboard the International Space Station

2002-07-15
2002-01-2358
The paper deals with the construction and performance data of the service module Zvezda water and oxygen supply systems of the International Space Station (ISS). The performance data at the first 14 months of manned station functioning are provided. The data of humidity condensate and recovered water compositions are reviewed. The water supply and demand balance are analyzed. The system of oxygen generation “Electron-VM” and its functioning results are reviewed. The effective cooperation of the international partners on part of life support is shown.
Technical Paper

Water Supply Based on Water Reclamation from Humidity Condensate and Urine on a Space Station

1996-07-01
961408
The paper reviews an integrated system for space station water supply based on a combination of water recovery systems and a water resupply system. The water balance data and system performance data in long-duration operation on the Mir space station are presented. A water supply concept for the Russian's segment (RS) of the International Space Station (ISS) is substantiated.
Technical Paper

SRV-K Status aboard the International Space Station and Water Recovery Future Prospects

2004-07-19
2004-01-2489
The paper deals with the performance data of the service module Zvezda integrated water supply system of the International Space Station (ISS) as of March 31, 2004. The water supply and demand balance are analyzed. It is shown that water recovery from humidity condensate has been especially important when water delivery by Space Shuttles was terminated. The SRV-K contribution in potable water supply for crew needs was up to 76%. The data of humidity condensate and recovered water compositions are reviewed. The effective cooperation of the international partners on part of life support is shown. Water recovery future prospects are discussed.
Technical Paper

Experience in Development and Long-term Operation of Mir's System for Oxygen Generation by Electrolysis

2000-07-10
2000-01-2356
The paper describes the design specifics of the system for oxygen generation by electrolysis Elektron and major results obtained in long-term operation of the system aboard space station Mir. Operational data analysis makes possible to draw a conclusion that the system is capable to attain life parameters for at least 2 years with maintaining serviceability for no less than 8 years without attendance and unit replacement. Based on flight operation the possibility of reducing power consumption by 10 per cent is proven. System design updates are realized in the water electrolysis system intended for the Russian segment of the international space station.
Technical Paper

The Use of a Total Organic Carbon Analyzer in Testing of Water Recovery Systems for a Space Station

1999-07-12
1999-01-2034
The paper reviews the results obtained with a Sievers-820 total organic carbon (TOC) analyzer during ground tests of the Mir water recovery system (WRS). Calibration analysis results for water solution samples of individual compounds, typical of spacecraft atmospheric humidity condensate, and their mixtures are provided. Comparison of the test results to the calculated data and laboratory analyses performed by other methods are made. Analyzer readings are in good agreement with the chemical analyses of initial condensate and recovered water. The analyzer shows promise as an instrument for ground and future onboard spacecraft testing.
Technical Paper

Development and Operation of Separation and Heat-Transfer Equipment of Water Recovery Systems for Space Stations

2000-07-10
2000-01-2253
The paper deals with description and results of long-term operation of separation and heat-and-mass transfer hardware incorporated in Mir's water recovery systems. Static separators outfitted with hydrophilic capillary/ porous elements, a rotary separator, a through-flow condenser/static separator combination, a membrane evaporator as well as separation and distillation schematics are reviewed. Operational and life performance data are discussed and recommendations for hardware use on ISS are made.
X