Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Understanding of the Internal Crack Phenomenon inside Diesel Particulate Filter during Regeneration Part 1: Modeling and Experiments

2010-05-05
2010-01-1555
This study deals with a coupled experimental and modeling approach of Diesel Particulate Filter cracking. A coupled model (heat transfer, mass transfer, chemical reactions) is used to predict the temperature field inside the filter during the regeneration steps. This model consists of assembled 1D models and is calibrated using a set of laboratory bench tests. In this set of experiments, laboratory scale filters are tested in different conditions (variation of the oxygen rate and gas flow) and axial/radial thermal gradient are recorded with the use of thermocouples. This model is used to build a second set of laboratory bench tests, which is dedicated to the understanding of the phenomena of Diesel Particulate Filter cracking.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Journal Article

Control-Oriented Modeling of a LNT-SCR Diesel After-Treatment Architecture

2011-04-12
2011-01-1307
Lean NOx trap (LNT) and Selective Catalytic Reduction catalysts (SCR) are two leading candidates for diesel NOx after-treatment. Each technology exhibits good properties to reduce efficiently diesel NOx emissions in order to match the forthcoming EURO 6 standards. NOx reduction in LNT is made through a two-step process. In normal (lean) mode, diesel engine exhausts NOx is stored into the NOx trap; then when necessary the engine runs rich during limited time to treat the stored NOx. This operating mode has the benefit of using onboard fuel as NOx reducer. But NOx trap solution is restrained by limited active temperature windows. On the other hand, NH₃-SCR catalysts operate in a wider range of temperature and do not contain precious metals. However, NH₃-SCR systems traditionally use urea-water solution as reducing agent, requiring thus additional infrastructure to supply the vehicles with enough reducer. These pros and cons are quite restrictive in classical LNT or NH₃-SCR architecture.
Technical Paper

A Study of the Effects of 30% Biodiesel Fuel on Soot Loading and Regeneration of a Catalytic DPF

2007-07-23
2007-01-2023
Biofuels are a renewable energy source. When used as extenders for transportation fuels, biofuels contribute to the global reduction of Green House Gas and CO2 emissions from the transport sector and to security and independence of energy supply. On a “Well to Wheel” basis they are much more CO2 efficient than conventional fossil fuels. All vehicles currently in circulation in Europe are capable of using 5 % biodiesel. The introduction of higher percentages biodiesel needs new specific standards and vehicle tests validation. The development of vehicles compatible with 30% biodiesel blends in diesel fuel includes the validation of each part of both engine and fuel vehicle systems to guarantee normal operation for the entire life of the vehicle.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Technical Paper

Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map

2018-04-03
2018-01-0787
In order to simulate the working process, an accurate description of heat transfer occurring between in-cylinder gases and combustion chamber walls is required, especially regarding thermal efficiency, combustion and emissions, or cooling strategies. Combustion chamber wall heat transfer models are dominated by zero-dimensional semi-empirical models due to their good compromise between accuracy, complexity and computational efficiency. Classic models such as those from Woschni, Annand or Hohenberg are still widely used, despite having been developed on rather ancient engines. While numerous authors have worked on this topic in the past decades, little information can be found concerning the systematic calibration process of heat transfer models. In this paper, a systematic calibration method based on experimental data processing is tested on the complete operating map of a turbocharged GDI engine.
Technical Paper

Air System Conception for a Downsized Two-Stroke Diesel Engine

2012-04-16
2012-01-0831
This paper introduces a research work on the air loop system for a downsized two-stroke two-cylinder diesel engine conducted in framework of the European project dealing with the POWERtrain for Future Light-duty vehicles - POWERFUL. The main objective was to determine requirements on the air management including the engine intake and exhaust system, boosting devices and the EGR system and to select the best possible technical solution. With respect to the power target of 45 kW and scavenging demands of the two-cylinder two-stroke engine with a displacement of 0.73 l, a two-stage boosting architecture was required. Further, to allow engine scavenging at any operation, supercharger had to be integrated in the air loop. Various air loop system layouts and concepts were assessed based on the 1-D steady state simulation at full and part load with respect to the fuel consumption.
Technical Paper

Effect of Flow Distribution on Emissions Performance of Catalytic Converters

1998-02-23
980936
The emissions performance of catalytic converters under different conditions of flow distribution was investigated. Computational Fluid Dynamics methods were utilised to model the maldistribution effects of different inlet cones. The effects of maldistribution on ageing, light-off and conversion were investigated using steady state tests on an engine bench. Emission testing was also conducted on a vehicle throughout ECE and EUDC test cycles. Maldistribution was found to have a significant effect on the efficiency of the catalyst during the early stages of the ECE cycle for both fresh and aged catalysts. The effects were less significant over later stages of the ECE cycle and throughout the EUDC except NOx where maldistribution did have an effect on the conversion at higher flow rates during the later stages of the test.
Technical Paper

Repeatability of Fine Particle Measurement of Diesel and Gasoline Vehicles Exhaust Gas

2004-06-08
2004-01-1983
Four Diesel vehicles and two gasoline ones are used to determine the repeatability of the particle number and size measurements. Two analytical techniques are used: Scanning Mobility Particle Sizer (SMPS) and Electrical Low Pressure Impactor (ELPI). The influence of technology (Euro2 and Euro3, Diesel and gasoline vehicles, Diesel Particulate Filter (DPF), Gasoline Direct Injection (GDI)) and speed on the particle number and size is presented in the case of steady speeds and the European Driving Cycle (EDC). The repeatability of these measurements is determined at the entire particle distribution. The global 1.96*Standard Deviation (SD) of the median diameter, determined by SMPS, is 8 nm. The median diameter is difficult to be determined in several cases due to the flat profiles of the emitted particles. The global 1.96*Relative Standard Deviation (RSD) of the particle number presents a U-like curve, with a minimum value (55-57%) at about 100 nm.
Technical Paper

Comparison between the exhaust particles mass determined by the European regulatory gravimetric method and the mass estimated by ELPI

2005-05-11
2005-01-2147
Electrical Low Pressure Impactor (ELPI) is often employed to measure the particle number and size distribution of internal combustion engines exhaust gas. If appropriate values of particle density are available, the particle mass can be estimated by this method. Exhaust particles of three Euro3 passenger cars (one gasoline operating under stoichiometric conditions, one Diesel and one Diesel equipped with Diesel Particulate Filter) are measured using the current European regulations (gravimetric method on the are New European Driving Cycle) and estimated by ELPI particle number and size distribution. Different values for particle density are used to estimate the particle mass using all ELPI stages or only some of them. The results show that the particle mass estimated by ELPI is well correlated with the mass determined by filters for PM emissions higher than 0.025 g/km. This correlation is not very good at lower emissions.
Technical Paper

Experimental Analysis of the Influence of Exhaust Manifold Junction Geometry on its Fluid-Dynamic Behavior

2000-03-06
2000-01-0914
The purpose of this paper is to present the results of a study on the exhaust junctions geometry. Twelve three-branch junctions of different geometry have been tested on a single cylinder engine. The parameters studied have been exhaust junction outlet-to-inlet diameter ratio, length, angle between inlet branches and the existence of a reed separating inlet branches. An analysis of the pressure waves amplitude (incident, reflected and transmitted) obtained from instantaneous pressure measurements in some locations around the junction has been carried out. The analysis of results shows that junction length has a low influence on its behavior. The ratio between inlet and outlet branches diameters increases both reflection and directionality (avoiding pressure wave transmission to the adjacent branch). The existence of a reed separating the inlet flows may increase directionality with moderate pressure losses if the throat area is not reduced.
X