Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

CARTRONIC - An Open Architecture for Networking the Control Systems of an Automobile

The car industry has reached a point where electronic systems, which were so far essentially autonomous, begin to grow together to a Car-Wide Web. The main driving force is the demand for more safety, security, and comfort implemented economically. Already various parties are working on control networks. In the long run, vehicle motion and dynamic systems, safety, security, comfort as well as mobile multimedia systems will integrate and reach out for the vision of accident-free, comfortable, and well-informed driving. As a foundation for a Car-Wide Web, Bosch is developing an open architecture called CARTRONIC. The essence of CARTRONIC is to define structuring rules, modeling rules and patterns for total, integrated control of vehicles. The rules and patterns allow the mapping of high-level functions onto several physical implementations, for instance one logical description of functional connections could be created for cars with different equipment packages.
Technical Paper

Fuel Injection Equipment for Heavy Duty Diesel Engines for U. S. 1991/1994 Emission Limits

The particulate emissions can be reduced by increasing injection pressure. The NOx-emission can be lowered to the required amount with a retarded injection-begin. These measures raise fuel consumption by approximately 8-10 %. To avoid blue smoke from the cold engine, it is advantageous that the fuel injection is advanced during the warm-up period. These statements apply for injection systems with unit injectors as well as for pump-line-nozzle-systems. In this paper, the pump-line-nozzle-system will be described. With this system, injection pressures of 1200 to 1400 bar at the injection nozzle are reached. The injection-begin can be changed with a control-sleeve in-line pump. The injection-begin and fuel quantity can be flexibly and accurately adjusted by means of an electronic governor.
Technical Paper

A User-Friendly Program System for Digital Simulation of Hydraulic Equipment

Mathematical modelling has proved to be a valuable tool for understanding the performance of diesel injection systems. There are several programs for the simulation of conventional injection equipment, but up to now it has been very expensive to simulate new concepts of injection equipment. Therefore a general program system for simulation of transient hydraulic processes - especially in diesel injection systems - has been developped. By this system, any new injection equipment can be simulated user-friendly and without needing to write new programs. The differential equations are solved by mathematical methods, which promise stability in all conditions and offer short calculation times. Since 1983 the program system has been applied to a lot of non-conventional and conventional injection systems and has proved its reliability.
Technical Paper

ISO 26262 Release Just Ahead: Remaining Problems and Proposals for Solutions

The release of ISO 26262 is only about three months after the 2011 World Congress. However, there are still some contentious aspects that can introduce challenges or cause a disproportionate effort. In this paper, we will show how to avoid these problems. ISO 26262 provides a detailed method for classifying the Automotive Safely Integrity Level (ASIL) of in-vehicle electronic systems. However, the ASIL value for a specific function/product can vary significantly across the industry. Applying a lower level than the industry norm can cause substantial liability problems. Applying a higher level can initiate an “arms race” with competitors. This is particularly true if there are no vehicle-related reasons for choosing the higher level or if it doesn't make the product any safer. To encourage international harmonization, this paper will define ASIL classifications for the main automotive components. Most functions/products are currently being developed using parts of existing products.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

FMI for Physics-Based Models on AUTOSAR Platforms

As automobiles become increasingly smarter, the need to understand within the automotive software the physical behavior of its parts is growing as well. The laws of physics governing such behavior are mostly formulated as differential equations, which today are usually created or obtained from various modeling tools. For solving them, the tools offer several solvers to satisfy the requirements of different problems. E.g. simple and fast explicit low order solvers for non-stiff problems and more complex implicit solvers for stiff problems. Though the modeling and code generation features as available in such tools are desirable for embedded automotive software, they cannot be used directly due to special restrictions with respect to hard realtime constraints. One such restriction is the organization of automotive software in components complying with the AUTOSAR standard which is not widely supported by the modeling tools.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
Technical Paper

Software Controlled Homogeneity Analysis of Headlamp Light Distribution

This paper will describe the procedures that will enhance the possibilities of qualitative evaluation of headlamp light distributions. A basis will be the description of a light distribution coming only from reflector geometries, i.e. headlamps with clear outer lens design. Further steps of evaluation, as visualization and homogeneity analysis become more and more important for a headlamp evaluation. The recently developed tools can support both the headlamp manufacturer and the car manufacturer in finding a common understanding in headlamp performance of a projected car at a very early stage of development.
Technical Paper

AutoMoDe - Notations, Methods, and Tools for Model-Based Development of Automotive Software

This paper describes the first results from the AutoMoDe project (Automotive Model-based Development), where an integrated methodology for model-based development of automotive control software is being developed. The results presented include a number of problem-oriented graphical notations, based on a formally defined operational model, which are associated with system views for various degrees of abstraction. It is shown how the approach can be used for partitioning comprehensive system designs for subsequent implementation-related tasks. Recent experiences from a case study of an engine management system, specific issues related to reengineering, and the current status of CASE-tool support are also presented.
Technical Paper

Integration of Time Triggered CAN (TTCAN_TC)

Time Triggered CAN (TTCAN) is an extension of the well-known CAN protocol, introducing to CAN networks time triggered communication and a system wide global network time with high precision. Time Triggered CAN has been accepted as international standard ISOCD11898-4. The time triggered communication is built upon the unchanged standard CAN protocol. This allows a software implementation of the time triggered function of TTCAN, based on existing CAN ICs. The high precision global time however requires a hardware implementation. A hardware implementation also offers additional functions like time mark interrupts, a stopwatch, and a synchronization to external events, all independent of software latency times. The TTCAN testchip (TTCAN_TC) is a standalone TTCAN controller and has been produced as a solution to the hen/egg problem of hardware availability versus tool support and research.
Technical Paper

Luminance Measurement, Contrast Sensitivity, Homogeneity: New Approaches of Defining the Quality of Headlamps

The conventional measurements to describe the photometric quality of headlamps usually only comprise the luminous flux and the illuminance (resp. the luminous intensity) in several measuring points given by Type Approval Legislation. Practically, these photometric measurements do not describe the visual impression of a headlamp light distribution sufficiently, neither in lab nor in real street geometry. With the clear outer lens headlamps introduced recently, filament images are projected directly onto the screens or streets, thus giving new impulses to research. Starting from the established photometric practice, other types of measurements and physiological fundamentals will be discussed. The basic tools to make physical measurement and physiological impression comparable, e.g. in terms of homogeneity, are shown.