Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Life Cycle and Economic Analysis of Heavy Duty Diesel Vehicle Idling Alternatives

2004-03-08
2004-01-0637
Heavy Duty Diesel Truck (HDDT) drivers are required by law to rest 8 hours for every 10 driving hours. As a consequence, the trucks are idled for long periods of time to heat or cool the cabin, to keep the engine warm, to run electrical appliances, and to refrigerate or heat truck cargo. This idling results in gaseous and particulate emissions, wasted fuel and is costly. Various technologies can be used to replace truck idling, including heaters, auxiliary power units, parking space electrification, and heating and air conditioning units in the parking space. In this paper the results of a life cycle analysis are reported giving the associated emissions savings and ecological burdens of these four technologies compared to truck idling. In this analysis the savings related to reduced engine maintenance and increased engine life are included. The fuel consumed and emissions produced by a truck engine at idle was obtained from experiments performed at Aberdeen Test Center (ATC).
Technical Paper

Modeling of Commuter Category Aircraft Seats Under Crash Loading

2003-09-08
2003-01-3028
This paper describes the development of a non-linear finite element model of a commuter category aircraft seat designed to explore the issue of energy absorption in severe, but survivable, crashes. Using a reference seat, the paper presents a description of the model and the results of finite element modeling of the seat at increasingly severe impact velocities. The paper presents the results of a parallel experimental program, conducted to validate the model, in which instrumented crash dummies were drop tested in the reference seat at the same impact velocities as the simulation. Experimental results are reported for passenger lower lumbar loading, peak pelvic acceleration, and seat structural loading.
Technical Paper

The Effect of Ambient Temperature and Humidity on Measured Idling Emissions from Diesel School Buses

2004-03-08
2004-01-1087
The New Jersey Department of Transportation (NJDOT) is currently sponsoring a research study at Rowan University to develop strategies for reducing diesel emissions from mobile sources such as school buses and class 8 trucks. One such source of diesel emissions results from unnecessary idling of school buses, which is a typical practice that occurs in the mornings to warm up engines and in the afternoon while bus drivers wait to pick up children for their afternoon routes. To quantify emissions and fuel consumption during idling, three school buses equipped with an International T444E, an International DT466E, and a Cummins 5.9L B series engine were instrumented and tested in an environmental chamber. To simulate a wide variety of idling situations, tests were conducted at four different ambient temperatures (20°F, 40°F, 65°F and 85°F) and relative humidity ranging from 37 to 90%.
Technical Paper

Application of Experimental Design in the Steady State Particulate Exposure Levels in a 1992 International School Bus

2004-03-08
2004-01-1088
A steady state mobile test was developed to measure the concentration of breathable particles that can enter the cabin of a school bus. The principles of experimental design were used to identify the experimental conditions for the test and to analyze the data. The design consisted of a series of steady-state tests using a 1992 International school bus. The testing was performed on a closed three mile track at the Army Test Center in Aberdeen, MD. The mass concentrations of particles smaller than 2.5 microns were measured at three locations inside the bus and at the air intake into the engine. The number concentration of particles was measured at the tailpipe. Three factors were varied at three levels in a Box-Benhken design. The steady state speed was set at 5, 30, and 55 mph. A load was applied to the engine with a mobile dynamometer to simulate a 0, 0.67% and 1.33% road grade.
Technical Paper

The Evolution of Side Crash Compatibility Between Cars, Light Trucks and Vans

2003-03-03
2003-01-0899
Several research studies have concluded that light trucks and vans (LTVs) are incompatible with cars in traffic collisions. These studies have noted that crash incompatibility is most severe in side crashes. These early research efforts however were conducted before complete introduction of crash injury countermeasures such as dynamic side impact protection. Based upon U.S. traffic accident statistics, this paper investigates the side crash compatibility of late model cars, light trucks and vans equipped with countermeasures designed specifically to provide side crash protection. The paper explores both LTV-to-car crash compatibility and crash incompatibility in car-to-car collisions.
Technical Paper

Experimental Evaluation of Aftertreatment Devices on Mobile School Bus Emissions from Diesel Powered School Buses

2005-04-11
2005-01-1757
The New Jersey Department of Transportation (NJDOT) is currently sponsoring a research study at Rowan University to develop strategies for reducing diesel emissions from mobile sources such as school buses and class 8 trucks. This paper presents the results of mobile school bus testing that has been performed to quantify the emission reduction capabilities of various aftertreatment devices. Particulate filters from Johnson Matthey and Lubrizol were tested along with a diesel oxidation catalyst (DOC) from Nett Technologies. Three school buses equipped with a 1997 7.3L International T444E, a 1997 7.6L International DT466E, and a 1996 Cummins 5.9L ISB series engine were instrumented and tested at the Aberdeen Test Center at the Aberdeen Proving Grounds in Maryland. Exhaust gas emission measurements were made using a Sensors Semtech-D to measure CO, CO2, NO2, NO, O2, and HC, along with a Sensors PM-300 to measure particulate matter (PM).
X