Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges

2012-06-18
High-load HCCI combustion has recently been demonstrated with conventional gasoline using intake pressure boosting. The key is to control the high combustion heat release rates (HRR) by using combustion timing retard and mixture stratification. However, at naturally aspirated and moderately boosted conditions, these techniques did not work well due to the low autoignition reactivity of conventional gasoline at these conditions. This work studies a low-octane distillate fuel with similar volatility to gasoline, termed Hydrobate, for its potential in HCCI engine combustion at naturally aspirated and low-range boosted conditions. The HCCI combustion with fully premixed and partially stratified charges was examined at intake pressures (Pin) from 100 to 180 kPa and constant intake temperature (60�C) and engine speed (1200 rpm).
Technical Paper

Piston Wetting in an Optical DISI Engine: Fuel Films, Pool Fires, and Soot Generation

2001-03-05
2001-01-1203
Piston-wetting effects are investigated in an optical direct-injection spark-ignition (DISI) engine. Fuel spray impingement on the piston leads to the formation of fuel films, which are visualized with a laser-induced fluorescence (LIF) imaging technique. Oxygen quenching is found to reduce the fluorescence yield from liquid gasoline. Fuel films that exist during combustion of the premixed charge ignite to create piston-top pool fires. These fires are characterized using direct flame imaging. Soot produced by the pool fires is imaged using laser elastic scattering and is found to persist throughout the exhaust stroke, implying that piston-top pool fires are a likely source of engine-out particulate emissions for DISI engines.
Technical Paper

Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions

2001-03-05
2001-01-0530
Ambient gas temperature and density, injection pressure, and orifice diameter effects on the flame lift-off length on a direct-injection (DI) diesel spray under quiescent conditions were experimentally investigated. The impacts of the observed lift-off length variations on air entrainment upstream of the lift-off location, soot formation, and the relationship between fuel vaporization and combustion were also examined. The research was conducted in a constant-volume combustion vessel using a common-rail fuel injector and a Phillips research grade #2 diesel fuel. The lift-off length measurements show that lift-off length decreases with increasing ambient gas temperature or density, and increases with increasing injection pressure or orifice diameter. The sensitivity of lift-off length to a change in either temperature or density was non-linear, with the sensitivity to either parameter decreasing as it increased.
Technical Paper

Hydrogen Fueled Engines in Hybrid Vehicles

2001-03-05
2001-01-0546
This paper describes the motivation for developing hydrogen-fueled engines for use in hybrid electric vehicles of the future. The ultimate motivation for using hydrogen as an energy carrier is carbon management. However, air quality concerns also provide motivation for developing hydrogen-fueled vehicles. For this reason, we discuss the position of the hydrogen-powered hybrid vehicle within the California Air Resources Board requirement for Zero Emission Vehicles. We describe the expected performance of an electrical generation system powered by a four-stroke, spark-ignited, internal combustion engine for a hydrogen-powered hybrid vehicle. The data show that the engine-out emissions of NOx will allow the vehicle to operate below the Super Ultra-Low Emission Vehicle standard set by the California Air Resources Board. The engine can run on either hydrogen or blends of hydrogen and natural gas. The engine can be optimized for maximum efficiency with low emissions.
Technical Paper

Extinction Measurements of In-Cylinder Soot Deposition in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1296
The combustion process in diesel engines deposits soot on the in-cylinder surfaces. Previous works have suggested that these soot deposits eventually break off during cylinder blow-down and the exhaust stroke and contribute significantly to exhaust soot emissions. In order to better understand this potential pathway to soot emissions, the authors recently investigated combusting fuel-jet/wall interactions in a diesel engine. This work, published as a companion paper, showed how soot escaped from the combusting fuel jet and was brought in close proximity to the wall so that it could become a deposit. The current study extends this earlier work with laser-extinction measurements of the soot-deposition rate in the same single-cylinder, heavy-duty DI diesel engine. Measurements were made by passing the beam of a CW-diode laser through a window in the piston bowl rim that was in-line with one of the fuel jets.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

Update on Engine Combustion Research at Sandia National Laboratories

2001-05-14
2001-01-2060
The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.
Technical Paper

Glow Plug Assisted Ignition and Combustion of Methanol in an Optical DI Diesel Engine

2001-05-07
2001-01-2004
An experimental study of the glow-plug-assisted ignition and combustion of pure methanol (M100) was conducted using a modern-technology, 4-stroke, heavy-duty DI diesel engine that has been modified to provide extensive optical access into the combustion chamber. For comparison purposes, results also are presented for a two-component paraffinic diesel reference fuel with a cetane number of 45 (CN45). A 1200-rpm, moderate-load operating condition was studied. Images of direct luminosity from the combustion chamber are used along with thermodynamic analyses of cylinder pressure data to identify differences between the ignition and combustion characteristics of the two fuels. The M100 data show significant departures from the traditional diesel combustion features exhibited by CN45. Whereas CN45 readily autoignites at the conditions studied, M100 does not. The glow-plug-assisted ignition of M100 was found to be strongly dependent on glow plug (GP) temperature and proximity to a fuel jet.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Emissions in a High-Speed Direct-Injection Diesel Engine

2001-03-05
2001-01-1004
Experimental data is used in conjunction with multi-dimensional modeling in a modified version of the KIVA-3V code to characterize the emissions behavior of a high-speed, direct-injection diesel engine. Injection pressure and EGR are varied across a range of typical small-bore diesel operating conditions and the resulting soot-NOx tradeoff is analyzed. Good agreement is obtained between experimental and modeling trends; the HSDI engine shows increasing soot and decreasing NOx with higher EGR and lower injection pressure. The model also indicates that most of the NOx is formed in the region where the bulk of the initial heat release first takes place, both for zero and high EGR cases. The mechanism of NOx reduction with high EGR is shown to be primarily through a decrease in thermal NOx formation rate.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

LIF and Flame-Emission Imaging of Liquid Fuel Films and Pool Fires in an SI Engine During a Simulated Cold Start

1997-02-24
970866
Video imaging has been used to investigate the evolution of liquid fuel films on combustion chamber walls during a simulated cold start of a port fuel-injected engine. The experiments were performed in a single-cylinder research engine with a production, four-valve head and a window in the piston crown. Flood-illuminated laser-induced fluorescence was used to observe the fuel films directly, and color video recording of visible emission from pool fires due to burning fuel films was used as an indirect measure of film location. The imaging techniques were applied to a comparative study of open and closed valve injection, for coolant temperatures of 20, 40 and 60 °C. In general, for all cases it is shown that fuel films form in the vicinity of the intake valve seats.
Technical Paper

Chemiluminescence Imaging of Autoignition in a DI Diesel Engine

1998-10-19
982685
Chemiluminescence imaging has been applied to a parametric investigation of diesel autoignition. Time-resolved images of the natural light emission were made in an optically accessible DI diesel engine of the heavy-duty size class using an intensified CCD video camera. Measurements were obtained at a base operating condition, corresponding to a motored TDC temperature and density of 992 K and 16.6 kg/m3, and for TDC temperatures and densities above and below these values. Data were taken with a 42.5 cetane number blend of the diesel reference fuels for all conditions, and measurements were also made with no. 2 diesel fuel (D2) at the base condition. For each condition, temporal sequences of images were acquired from the time of first detectable chemiluminescence up through fully sooting combustion, and the images were analyzed to obtain quantitative measurements of the average emission intensity.
Technical Paper

Characterization of the Mixing of Fresh Charge with Combustion Residuals Using Laser Raman Scattering with Broadband Detection

1998-05-04
981428
Spontaneous Raman scattering with broadband signal collection is used to simultaneously measure the mole fractions of CO2, H2O, N2, O2, and fuel (C3H8) in a spark-ignition engine operating at low load. Both cycle-averaged and single-shot, cycle-resolved measurements of the mixing between residual and fresh charge are made from the beginning of the intake stroke to TDC compression. The measurements are made at twelve locations simultaneously with sub-millimeter spatial precision, which is sufficient to resolve the characteristic scales of inhomogeneity in most cases. Analysis of the spatial covariance functions provides a measure of the noise contribution to the measured mole fractions and, in certain instances, allows the determination of whether the measured composition fluctuations are associated with spatial inhomogeneities or with cyclic variations in overall charge composition.
Technical Paper

Evaluation and Optimization of Measurements of Flame Kernel Growth and Motion Using a Fiber-Optic Spark Plug Probe

1998-05-04
981427
Spark plugs instrumented with a ring of optical fibers in the threaded-body region have seen considerable use in the past ten years, and it is expected that their application to unmodified production engines will increase in the years to come. Interpretation of the optical signals obtained with the probe is often difficult, particularly under lean operating conditions where the low luminosity of the flame leads to imprecise flame arrival detection. A systematic look at the optical signals, along with direct imaging of the flame, has been undertaken to calibrate and optimize the determination of flame arrival times. In addition, an evaluation of the different models available for the analysis of the flame arrival data is made. Data fits are compared with real flame images, to determine which model best estimates the convective velocity of the flow and the expansion speed of the flame kernel.
Technical Paper

Homogeneous Charge Compression Ignition with a Free Piston: A New Approach to Ideal Otto Cycle Performance

1998-10-19
982484
Sandia National Laboratories has been investigating a new, integrated approach to generating electricity with ultra low emissions and very high efficiency for low power (30 kW) applications such as hybrid vehicles and portable generators. Our approach utilizes a free piston in a double-ended cylinder. Combustion occurs alternately at each cylinder end, with intake/exhaust processes accomplished through a two stroke cycle. A linear alternator is mounted in the center section of the cylinder, serving to both generate useful electrical power and to control the compression ratio by varying the rate of electrical generation. Thus, a mechanically simple geometry results in an electronically controlled variable compression ratio configuration. The capability of the homogeneous charge compression ignition combustion process employed in this engine with regards to reduced emissions and improved thermal efficiency has been investigated using a rapid compression expansion machine.
Technical Paper

Improving Aircraft Composite Inspections Using Optimized Reference Standards

1998-11-09
983120
The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft.
Technical Paper

Detection Reliability Study for Interlayer Cracks

1998-11-09
983125
The Federal Aviation Administration Airworthiness Assurance Nondestructive Inspection Validation Center (FAA-AANC) is currently conducting a detection reliability study pertaining to the detection of cracks in multi-layered aluminum sheets. This paper describes the design, production and characterization of test specimens that are currently being used to conduct third layer Probability of Detection (PoD) experiments. Pertinent aspects of the lap splice joints for Boeing 737 aircraft, Line Numbers 292 - 2565 are included in the test specimens. A preliminary analysis of the data indicates that for some inspectors, traditional measures of performance - in particular PoD curves based on maximum likelihood fit to two-parameter lognormal curve - may be misleading.
Technical Paper

PLIF Imaging of NO Formation in a DI Diesel Engine1

1998-02-01
980147
NO formation during direct-injection (DI) diesel combustion has been investigated using planar laser-induced fluorescence (PLIF) imaging. Measurements were made at a typical medium-speed operating condition in a heavy-duty size-class engine modified for optical access. By combining a unique laser system with a particular spectroscopic scheme, single-shot NO images were obtained at realistic operating conditions with negligible O2 interference. Temporal sequences of NO PLIF images are presented along with corresponding images of combined elastic scattering and natural luminosity. These images show the location and timing of the NO formation relative to the other components of the reacting fuel jet. In addition, total NO formation was examined by integrating the NO PLIF signal over a large fraction of the combustion-chamber volume.
Technical Paper

The Influence of Fuel Volatility on the Liquid-Phase Fuel Penetration in a Heavy-Duty D.I. Diesel Engine

1998-02-23
980510
The objective of this investigation is to verify and characterize the influence of fuel volatility on maximum liquid-phase fuel penetration for a variety of actual Diesel fuels under realistic Diesel engine operating conditions. To do so, liquid-phase fuel penetration was measured for a total of eight Diesel fuels using laser elastic-scatter imaging. The experiments were carried out in an optically accessible Diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. In addition to liquid-phase fuel penetration, ignition delay was assessed for each fuel based on pressure-derived apparent heat release rate and needle lift data. For all fuels examined, it was observed that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum characteristic length. Beyond this characteristic length, the fuel is entirely vapor phase and not just smaller fuel droplets.
X