Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Comparison of Several Model Validation Conceptions against a “Real Space” End-to-End Approach

2011-04-12
2011-01-0238
This paper1 explores some of the important considerations in devising a practical and consistent framework and methodology for working with experiments and experimental data in connection with modeling and prediction. The paper outlines a pragmatic and versatile “real-space” approach within which experimental and modeling uncertainties (correlated and uncorrelated, systematic and random, aleatory and epistemic) are treated to mitigate risk in modeling and prediction. The elements of data conditioning, model conditioning, model validation, hierarchical modeling, and extrapolative prediction under uncertainty are examined. An appreciation can be gained for the constraints and difficulties at play in devising a viable end-to-end methodology. The considerations and options are many, and a large variety of viewpoints and precedents exist in the literature, as surveyed here. Rationale is given for the various choices taken in assembling the novel real-space end-to-end framework.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Journal Article

Effects of Real-Fluid Thermodynamics on High-Pressure Fuel Injection Processes

2014-04-01
2014-01-1429
This paper first summarizes a new theoretical description that quantifies the effects of real-fluid thermodynamics on liquid fuel injection processes as a function of pressure at typical engine operating conditions. It then focuses on the implications this has on modeling such flows with emphasis on application of the Large Eddy Simulation (LES) technique. The theory explains and quantifies the major differences that occur in the jet dynamics compared to that described by classical spray theory in a manner consistent with experimental observations. In particular, the classical view of spray atomization as an appropriate model at some engine operating conditions is questionable. Instead, non-ideal real-fluid behavior must be taken into account using a multicomponent formulation that applies to hydrocarbon mixtures at high-pressure supercritical conditions.
Journal Article

Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines

2012-04-16
2012-01-1107
This study systematically investigates the effects of various engine operating parameters on the thermal efficiency of a boosted HCCI engine, and the potential of E10 to extend the high-load limit beyond that obtained with conventional gasoline. Understanding how these parameters can be adjusted and the trade-offs involved is critical for optimizing engine operation and for determining the highest efficiencies for a given engine geometry. Data were acquired in a 0.98 liter, single-cylinder HCCI research engine with a compression-ratio of 14:1, and the engine facility was configured to allow precise control over the relevant operating parameters. The study focuses on boosted operation with intake pressures (Pin) ≥ 2 bar, but some data for Pin < 2 bar are also presented. Two fuels are considered: 1) an 87-octane gasoline, and 2) E10 (10% ethanol in this same gasoline) which has a lower autoignition reactivity for boosted operation.
Journal Article

Energy Distribution Analysis in Boosted HCCI-like / LTGC Engines - Understanding the Trade-Offs to Maximize the Thermal Efficiency

2015-04-14
2015-01-0824
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), on the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. The various methods are evaluated in order to validate the trends.
Technical Paper

Numerical and Experimental Investigation of Turbulent Flows in a Diesel Engine

2006-10-16
2006-01-3436
This paper presents a study of the turbulence field in an optical diesel engine operated under motored conditions using both large eddy simulation (LES) and Particle Image Velocimetry (PIV). The study was performed in a laboratory optical diesel engine based on a recent production engine from VOLVO Car. PIV is used to study the flow field in the cylinder, particularly inside the piston bowl that is also optical accessible. LES is used to investigate in detail the structure of the turbulence, the vortex cores, and the temperature field in the entire engine, all within a single engine cycle. The LES results are compared with the PIV measurements in a 40 × 28 mm domain ranging from the nozzle tip to the cylinder wall. The LES grid consists of 1283 cells. The grid dynamically adjusts itself as the piston moves in the cylinder so that the engine cylinder, including the piston bowl, is described by the grid.
Technical Paper

An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging

2006-04-03
2006-01-1518
Chemiluminescence imaging has been applied to investigate the naturally occurring charge stratification in an HCCI engine. This stratification slows the pressure-rise rate (PRR) during combustion, making it critical to the high-load operating limit of these engines. Experiments were conducted in a single-cylinder HCCI engine modified with windows in the combustion chamber for optical access. Using this engine, chemiluminescence images were obtained from three different view angles. These included both single-shot images with intensified CCD cameras and high-speed (20kHz) sequences with an intensified CMOS video camera. The engine was fueled with iso-octane, which has been shown to be a reasonable surrogate for gasoline and exhibits only single-stage ignition at these naturally aspirated conditions. The chemiluminescence images show that the HCCI combustion is not homogeneous but has a strong turbulent structure even when the fuel and air are fully premixed prior to intake.
Technical Paper

Operational Characteristics of Oxygenate-Water Fuel Blends Studied in an Optical DI Diesel Engine with Simulated Exhaust Gas Recirculation

2007-07-23
2007-01-2017
Engine combustion strategies that preserve high cycle efficiency while minimizing engine-out pollutant emissions are the focus of major research efforts around the world. Such high efficiency clean combustion (HECC) strategies typically employ compression ignition of a charge that exhibits an elevated degree of fuel/air premixing and/or dilution with combustion products. Prior studies have shown that a highly dilute, mixing-controlled combustion strategy using a high-cetane, oxygenated fuel can achieve HECC while avoiding the control, high-load knock, and light-load incomplete combustion difficulties that are often experienced with approaches that use a high degree of charge premixing. On the other hand, employing high dilution levels (e.g., by using large amounts of cooled exhaust gas recirculation, EGR) can place excessive burdens on engine heat exchangers and air-handling systems.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-04-11
2005-01-0121
Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process.
Technical Paper

An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines

2004-06-08
2004-01-1900
Combustion phasing is one important issue that must be addressed for HCCI operation. The intake temperature can be adjusted to achieve ignition at the desired crank angle. However, heat-transfer during induction will make the effective intake temperature different from the temperature measured in the runner. Also, depending on the engine speed and port configuration, dynamic flow effects cause various degrees of charge heating. Additionally, residuals from the previous cycle can have significant influence on the charge temperature at the beginning of the compression stroke. Finally, direct injection of fuel will influence the charge temperature since heat is needed for vaporization. This study investigates these effects in a systematic manner with a combination of experiment and cycle simulation using WAVE from Ricardo.
Technical Paper

Measurements of the Influence of Soot Radiation on In-Cylinder Temperatures and Exhaust NOx in a Heavy-Duty DI Diesel Engine

2005-04-11
2005-01-0925
It is generally accepted that thermal (Zeldo'vich) chemical kinetics dominate NO formation in diesel engines, so control of temperature is critical for reducing exhaust NOx emissions. Recent optical engine data revealed that when the start of injection (SOI) was retarded to very late timings, combustion luminosity decreased while exhaust NOx emissions increased, causing a “NOx bump.” This data suggested that changes in radiative heat transfer from soot may affect in-cylinder temperatures and subsequent NOx formation. In this study, soot thermometry measurements of in-cylinder temperature and radiative heat transfer were correlated with exhaust NOx to quantify the role of radiative heat transfer on in-cylinder temperatures and NOx formation. The engine was operated at low-load conditions, for which the premixed burn was a significant fraction of the total heat release.
Technical Paper

A Numerical Study of a Free Piston IC Engine Operating on Homogeneous Charge Compression Ignition Combustion

1999-03-01
1999-01-0619
A free piston, internal combustion (IC) engine, operating at high compression ratio (∼30:1) and low equivalence ratio (ϕ∼0.35), and utilizing homogeneous charge compression ignition combustion, has been proposed by Sandia National Laboratories as a means of significantly improving the IC engine's cycle thermal efficiency and exhaust emissions. A zero-dimensional, thermodynamic model with detailed chemical kinetics, and empirical scavenging, heat transfer, and friction component models has been used to analyze the steady-state operating characteristics of this engine. The cycle simulations using hydrogen as the fuel, have indicated the critical factors affecting the engine's performance, and suggest the limits of improvement possible relative to conventional IC engine technologies.
Technical Paper

Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

1999-08-02
1999-01-2561
We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th-scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750°C. The air/fuel mixture was electrically preheated to 640°C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a full-scale hybrid receiver.
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy

2017-03-28
2017-01-0728
For lean or dilute, boosted gasoline compression-ignition engines operating in a low-temperature combustion mode, creating a partially stratified fuel charge mixture prior to auto-ignition can be beneficial for reducing the heat-release rate (HRR) and the corresponding maximum rate of pressure rise. As a result, partial fuel stratification (PFS) can be used to increase load and/or efficiency without knock (i.e. without excessive ringing). In this work, a double direct-injection (D-DI) strategy is investigated for which the majority of the fuel is injected early in the intake stroke to create a relatively well-mixed background mixture, and the remaining fuel is injected in the latter part of the compression stroke to produce greater fuel stratification prior auto-ignition. Experiments were performed in a 1-liter single-cylinder engine modified for low-temperature gasoline combustion (LTGC) research.
Journal Article

Large Eddy Simulation of Autoignition Transients in a Model Diesel Injector Configuration

2016-04-05
2016-01-0872
Developing an improved understanding of transient mixing and combustion processes inherent in diesel injection is an important element in the design of advanced engines. This paper provides a detailed analysis of these processes using an idealized benchmark configuration designed to facilitate precise comparisons between different models and numerical methods. The computational domain is similar to the Engine Combustion Network (www.sandia.gov/ECN) Spray-A injector with n-dodecane as the fuel. Quantified idealizations are made in the treatment of boundary conditions to eliminate ambiguities and unknowns associated with the actual injector(s) used in the experiment. These ambiguities hinder comparisons aimed at understanding the accuracy of different models and the coupled effects of potential numerical errors.
Technical Paper

Measurements and Correlations of Local Cylinder-Wall Heat-Flux Relative to Near-Wall Chemiluminescence across Multiple Combustion Modes

2020-04-14
2020-01-0802
Minimizing heat-transfer (HT) losses is important for both improving engine efficiency and increasing exhaust energy for turbocharging and exhaust aftertreatment management, but engine combustion system design to minimize these losses is hindered by significant uncertainties in prediction. Empirical HT correlations such as the popular Woschni model have been developed and various attempts at improving predictions have been proposed since the 1960s, but due to variations in facilities and techniques among various studies, comparison and assessment of modelling approaches among multiple combustion modes is not straightforward. In this work, simultaneous cylinder-wall temperature and OH* chemiluminescence high-speed video are all recorded in a single heavy-duty optical engine operated under multiple combustion modes. OH* chemiluminescence images provide additional insights for identifying the causes of near-wall heat flux changes.
X