Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Journal Article

Measurement of Equivalence Ratio in a Light-Duty Low Temperature Combustion Diesel Engine by Planar Laser Induced Fluorescence of a Fuel Tracer

2011-09-11
2011-24-0064
The spatial distribution of the mixture equivalence ratio within the squish volume is quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection. Data were acquired during the mixture preparation period from near the start of injection (-22.5° aTDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° aTDC). Despite the opposing squish flow, the fuel jets penetrate through the squish region to the cylinder bore. Although rapid mixing is observed in the head of each jet, rich regions remain at the head at the start of high-temperature heat release.
Journal Article

Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements with CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine

2012-04-16
2012-01-0143
In a recent experimental study the in-cylinder spatial distribution of mixture equivalence ratio was quantified under non-combusting conditions by planar laser-induced fluorescence (PLIF) of a fuel tracer (toluene). The measurements were made in a single-cylinder, direct-injection, light-duty diesel engine at conditions matched to an early-injection low-temperature combustion mode. A fuel amount corresponding to a low load (3.0 bar indicated mean effective pressure) operating condition was introduced with a single injection at -23.6° ATDC. The data were acquired during the mixture preparation period from near the start of injection (-22.5° ATDC) until the crank angle where the start of high-temperature heat release normally occurs (-5° ATDC). In the present study the measured in-cylinder images are compared with a fully resolved three-dimensional CFD model, namely KIVA3V-RANS simulations.
Journal Article

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

2013-04-08
2013-01-0561
The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process.
Technical Paper

Transient Rate of Injection Effects on Spray Development

2013-09-08
2013-24-0001
Transients in the rate of injection (ROI) with respect to time are ever-present in direct-injection engines, even with common-rail fueling. The shape of the injection ramp-up and ramp-down affects spray penetration and mixing, particularly with multiple-injection schedules currently in practice. Ultimately, the accuracy of CFD model predictions used to optimize the combustion process depends upon the accuracy of the ROI utilized as fuel input boundary conditions. But experimental difficulties in the measurement of ROI, as well as real-world affects that change the ROI from the bench to the engine, add uncertainty that may be mistaken for weaknesses in spray modeling instead of errors in boundary conditions. In this work we use detailed, time-resolved measurements of penetration at the Spray A conditions of the Engine Combustion Network to rigorously guide the necessary ROI shape required to match penetration in jet models that allow variable rate of injection.
Technical Paper

The Quantification of Mixture Stoichiometry When Fuel Molecules Contain Oxidizer Elements or Oxidizer Molecules Contain Fuel Elements

2005-10-24
2005-01-3705
The accurate quantification and control of mixture stoichiometry is critical in many applications using new combustion strategies and fuels (e.g., homogeneous charge compression ignition, gasoline direct injection, and oxygenated fuels). The parameter typically used to quantify mixture stoichiometry (i.e., the proximity of a reactant mixture to its stoichiometric condition) is the equivalence ratio, ϕ. The traditional definition of ϕ is based on the relative amounts of fuel and oxidizer molecules in a mixture. This definition provides an accurate measure of mixture stoichiometry when the fuel molecule does not contain oxidizer elements and when the oxidizer molecule does not contain fuel elements. However, the traditional definition of ϕ leads to problems when the fuel molecule contains an oxidizer element, as is the case when an oxygenated fuel is used, or once reactions have started and the fuel has begun to oxidize.
Technical Paper

Diagnostics for the Study of Cold Start Mixture Preparation in a Port Fuel-Injected Engine

1999-03-01
1999-01-1108
A variety of diagnostic techniques useful for the study of cold start phenomena are presented. Although the tools are demonstrated in a port fuel-injected engine, they are also suitable for direct-injection gasoline engines. A very useful technique, seemingly forgotten in the literature (and applicable to diesel engines as well), is the use of a short focal-length lens inside a Bowditch piston to expand the field-of-view. Rather than being limited by the clear aperture of the window in the piston, this technique permits the entire combustion chamber and the top section of the cylinder liner to be seen. Results using this technique are presented for the imaging of pool fires and laser-induced fluorescence of fuel films.
Technical Paper

Evaluation of Plasma-Sprayed, Thin-Film Pyrite Cathodes for Thermal Batteries

1999-08-02
1999-01-2513
Thermal batteries are normally constructed using pressed-powder anode, separator, and cathode pellets (discs). However, parts less than 0.010” thick are difficult to press from the starting powders. The use of plasma spraying to deposit thin pyrite films onto a stainless steel substrate was examined as an alternative to pressed-powder cathodes. The electrodes were tested under isothermal conditions and constant-current discharge over a temperature range of 400°C to 550°C using a standard LiSi anode and a separator based on the LiCIKCI eutectic. The plasma-sprayed cathodes were also evaluated in similar 5-cell thermal batteries. Cells and batteries using pressed-powder cathodes were tested under the same conditions for comparative purposes.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
X