Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Technical Paper

Pressure Ratio Influence on Exhaust Valve Flow Coefficients

2017-03-28
2017-01-0530
In one dimensional engine simulation software, flow losses over complex geometries such as valves and ports are described using flow coefficients. It is generally assumed that the pressure ratio over the valve has a negligible influence on the flow coefficient. However during the exhaust valve opening the pressure difference between cylinder and port is large which questions the accuracy of this assumption. In this work the influence of pressure ratio on the exhaust valve flow coefficient has been investigated experimentally in a steady-flow test bench. Two cylinder heads, designated A and B, from a Heavy-Duty engine with different valve shapes and valve seat angles have been investigated. The tests were performed with both exhaust valves open and with only one of the two exhaust valves open. The pressure ratio over the exhaust port was varied from 1.1:1 to 5:1. For case A1 with a single exhaust valve open, the flow coefficient decreased significantly with pressure ratio.
Technical Paper

Cylinder Pressure Based Cylinder Charge Estimation in Diesel Engines with Dual Independent Variable Valve Timing

2018-04-03
2018-01-0862
With stricter emission legislations and demands on low fuel consumption, new engine technologies are continuously investigated. At the same time the accuracy in the over all engine control and diagnosis and hence also the required estimation accuracy is tightened. Central for the internal combustion control is the trapped cylinder charge and composition Traditionally cylinder charge is estimated using mean intake manifold pressure and engine speed in a two dimensional lookup table. With the introduction of variable valve timing, two additional degrees of freedom are introduced that makes this approach very time consuming and therefore expensive. Especially if the cam phasers are given large enough authority to offer powerful thermal management possibilities. The paper presents a physical model for estimating in-cylinder trapped mass and residual gas fraction utilizing cylinder pressure measurements, and intake and exhaust valve lift profiles.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Experimental Determination of the Heat Transfer Coefficient in Piston Cooling Galleries

2018-09-10
2018-01-1776
Piston cooling galleries are critical for the pistons’ capability to handle increasing power density while maintaining the same level of durability. However, piston cooling also accounts for a considerable amount of heat rejection and parasitic losses. Knowing the distribution of the heat transfer coefficient (HTC) inside the cooling gallery could enable new designs which ensure effective cooling of areas decisive for durability while minimizing parasitic losses and overall heat rejection. In this study, an inverse heat transfer method is presented to determine the spatial HTC distribution inside the cooling gallery based on surface temperature measurements with an infrared (IR) camera. The method utilizes a piston specially machined so it only has a thin sheet of material of a known thickness left between the cooling gallery and the piston bowl. The piston - initially at room temperature - is heated up with warm oil injected into the cooling gallery.
Technical Paper

Dynamic Exhaust Valve Flow 1-D Modelling During Blowdown Conditions

2019-01-15
2019-01-0058
To conduct system level studies on internal combustion engines reduced order models are required in order to keep the computational load below reasonable limits. By its nature a reduced order model is a simplification of reality and may introduce modeling errors. However what is of interest is the size of the error and if it is possible to reduce the error by some method. A popular system level study is gas exchange and in this paper the focus is on the exhaust valve. Generally the valve is modeled as an ideal nozzle where the flow losses are captured by reducing the flow area. As the valve moves slowly compared to the flow the process is assumed to be quasi-steady, i.e. interpolation between steady-flow measurements can be used to describe the dynamic process during valve opening. These measurements are generally done at low pressure drops, as the influence of pressure ratio is assumed to be negligible.
Technical Paper

Study on Heat Losses during Flame Impingement in a Diesel Engine Using Phosphor Thermometry Surface Temperature Measurements

2019-04-02
2019-01-0556
In-cylinder heat losses in diesel engines decrease engine efficiency significantly and account for approximately 14-19% [1, 2, 3] of the injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the flame impingement onto the piston. Therefore, the present study investigates the heat losses during flame impingement onto the piston bowl wall experimentally. The measurements were performed on a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the flame was determined by evaluating a phosphor’s temperature dependent emission decay. Simultaneous cylinder pressure measurements and high-speed videos are associated to the surface temperature measurements in each cycle. Thus, surface temperature readings could be linked to specific impingement and combustion events.
Technical Paper

Comparison of heat losses at the impingement point and in between two impingement points in a diesel engine using phosphor thermometry

2019-12-19
2019-01-2185
In-cylinder heat losses in diesel engines reduce engine efficiency significantly and account for a considerable amount of injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the impingement of the flame. The present study compares the heat losses at the point where the flame impinges onto the piston bowl wall and the heat losses between two impingement points. Measurements were performed in a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the combusting diesel spray and at a point in between two impingement points was determined using phosphor thermometry. The dynamic heat fluxes and the heat transfer coefficients which result from the surface temperature measurements are estimated. Simultaneous cylinder pressure measurements and high-speed videos are associated to individual surface temperature measurements.
Technical Paper

Impact of Dynamic Exhaust Valve Modelling

2019-12-19
2019-01-2346
A method developed in SAE 2019-01-0058 to correct for deviations from quasi-steady exhaust valve flow is implemented on a single-cylinder GT-Power model and the effects on pumping work and blowdown pulse characteristics are investigated. The valve flow area is always reduced compared to the reference quasi-steady case. It decreases with higher pressure ratios over the valve and increases with higher engines speeds. The reduced flow area increases pumping work with load and engine speed, though primarily with engine speed. The magnitude of the blowdown pulse is reduced and the peak is shifted to a later crank angle.
Technical Paper

Knock Sensor Based Virtual Cylinder Pressure Sensor

2019-01-15
2019-01-0040
Typically the combustion in a direct injected compression ignited internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens up the possibility of a virtual combustion sensor which could enable closed-loop combustion control and thus the potential to counteract effects such as engine part to part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents a virtual cylinder pressure sensor based on the signal from the inexpensive but well proven knock sensor. The method used to convert the knock sensor signal into a pressure estimate included the stages: Phase correcting the raw signal, Filtering the raw signal, Scaling the signal to known thermodynamic laws and provided engine sensors signals and Reconstructing parts of the signal with other known models and assumptions.
X