Refine Your Search

Topic

Search Results

Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Journal Article

Modeling and Characterization of a Novel Porous Metallic Foam Inside Ducts

2015-06-15
2015-01-2203
A novel porous metallic foam has been studied in this work. This composite material is a mixture of resin and hollow spheres. It is lightweight, highly resistive to contamination and heat, and is capable of providing similar or better sound absorption compared to the conventional porous absorbers, but with a robust and less degradable properties. Several configurations of the material have been tested inside an expansion chamber with spatially periodic area changes. Bragg scattering was observed in some configurations with certain lattice constants. The acoustic properties of this material have been characterized from the measurement of the two-port matrix across a cylindrical sample. The complex density and speed of sound can be extracted from the transfer matrix using an optimization technique. Several models were developed to validate the effect of this metallic foam using Finite Elements and the Two-port Theory.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Journal Article

Sensitivity Analysis Study on Ethanol Partially Premixed Combustion

2013-04-08
2013-01-0269
Partially Premixed Combustion (PPC) is a combustion concept which aims to provide combustion with low smoke and NOx with high thermal efficiency. Extending the ignition delay to enhance the premixing, avoiding spray-driven combustion and controlling the combustion temperature at an optimum level through use of suitable lambda and EGR levels have been recognized as key factors to achieve such a combustion. Fuels with high ignitability resistance have been proven to be a useful to extend the ignition delay. In this work pure ethanol has been used as a PPC fuel. The objective of this research was initially to investigate the required operating conditions for PPC with ethanol. Additionally, a sensitivity analysis was performed to understand how the required parameters for ethanol PPC such as lambda, EGR rate, injection pressure and inlet temperature influence the combustion in terms of controllability, stability, emissions (i.e.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Journal Article

Cylinder Pressure-Based Virtual Sensor for In-Cycle Pilot Mass Estimation

2018-04-03
2018-01-1163
In this article, a virtual sensor for the estimation of the injected pilot mass in-cycle is proposed. The method provides an early estimation of the pilot mass before its combustion is finished. Furthermore, the virtual sensor can also estimate pilot masses when its combustion is incomplete. The pilot mass estimation is conducted by comparing the calculated heat release from in-cylinder pressure measurements to a model of the vaporization delay, ignition delay, and the combustion dynamics. A new statistical approach is proposed for the detection of the start of vaporization and the start of combustion. The discrete estimations, obtained at the start of vaporization and the start of combustion, are optimally combined and integrated in a Kalman Filter that estimates the pilot mass during the vaporization and combustion. The virtual sensor was programmed in a field programmable gate array (FPGA), and its performance tested in a Scania D13 Diesel engine.
Technical Paper

Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System

2009-04-20
2009-01-0896
In order to make efficient use of a Diesel engine equipped with an SCR system, it's important to have a complete system approach when it comes to calibration of the engine and the aftertreatment system. This paper presents a complete model of a heavy duty diesel engine equipped with a vanadia based SCR system. The diesel engine uses common rail fuel injection, a variable geometry turbocharger (VGT) and cooled EGR. The engine model consists of a quasi steady gas exchange model combined with a two-zone zero dimensional combustion model. The combustion model is a predictive heat release model. Using the calculated zone temperatures, the corresponding NOx concentration is given by the original Zeldovich mechanism. The SCR catalyst model is of the state space type. The basic model structure is a series of continuously stirred tank reactors and the catalyst walls are discretized to describe mass transport inside the porous structure.
Technical Paper

Study of a Heavy Duty Euro5 EGR-Engine Sensitivity to Fuel Change with Emphasis on Combustion and Emission Formation

2010-04-12
2010-01-0872
A diesel engine developed for an international market must be able to run on different fuels considering the diesel fuel qualities and the increasing selection of biofuels in the world. This leads to the question of how different fuels perform relative to a standard diesel fuel when not changing the hardware settings. In this study five fuels (Japanese diesel, MK3, EN590 with 10% RME, EN590 with 30% RME and pure RME) have been compared to a reference diesel fuel (Swedish MK1) when run on three different speeds and three different loads at each speed. The experiments are run on a Scania 13l Euro5 engine with standard settings for Swedish MK1 diesel. In general the differences were not large between the fuels. NO x usually increased compared to MK1 and then soot decreased as would be expected. The combustion efficiency increased with increased RME contents of the fuel but the indicated efficiency was not influenced by RME except for at higher loads.
Technical Paper

A Study of In-Cylinder Fuel Spray Formation and its Influence on Exhaust Emissions Using an Optical Diesel Engine

2010-05-05
2010-01-1498
Increasingly stringent emission legislation as well as increased demand on fuel efficiency calls for further research and development in the diesel engine field. Spray formation, evaporation and ignition delay are important factors that influence the combustion and emission formation processes in a diesel engine. Increased understanding of the mixture formation process is valuable in the development of low emission, high efficiency diesel engines. In this paper spray formation and ignition under real engine conditions have been studied in an optical engine capable of running close to full load for a real HD diesel engine. Powerful external lights were used to provide the required light intensity for high speed camera images in the combustion chamber prior to ignition. A specially developed software was used for spray edge detection and tracking. The software provides crank angle resolved spray penetration data.
Technical Paper

Validation of a Simplified Model for Combustion and Emission Formation in Diesel Engines Based on Correlations for Spray Penetration and Dispersion, Gas Entrainment into Sprays and Flame Lift-off

2010-05-05
2010-01-1494
A simplified combustion and emission formation model for diesel engines has been developed in a project where the long term objective is to predict emissions during transient operation. The intended application implies that the final model must be both computationally inexpensive and comprehensive so that it can be used for optimization of engine control variables when coupled to full-engine simulation software. As starting point, the proposed model uses diesel spray correlations established in combustion vessels regarding spray penetration, dispersion, gas entrainment, ignition and flame lift-off. It has been found that with minor adaption, these correlations are valid also for combustion in an engine. By assuming a fully mixing controlled combustion after ignition and by use of simplified emission models, the correlations have been found useful for predicting trends in engine-out emission with low computational cost.
Technical Paper

Comparison Between In-Cylinder PIV Measurements, CFD Simulations and Steady-Flow Impulse Torque Swirl Meter Measurements

2003-10-27
2003-01-3147
In-cylinder flow measurements, conventional swirl measurements and CFD-simulations have been performed and then compared. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. Bowditch type optical access and flat piston is used. The cylinder head was also measured in a steady-flow impulse torque swirl meter. From the two-dimensional flow-field, which was measured in the interval from -200° ATDC to 65° ATDC at two different positions from the cylinder head, calculations of the vorticity, turbulence and swirl were made. A maximum in swirl occurs at about 50° before TDC while the maximum vorticity and turbulence occurs somewhat later during the compression stroke. The swirl centre is also seen moving around and it does not coincide with the geometrical centre of the cylinder. The simulated flow-field shows similar behaviour as that seen in the measurements.
Technical Paper

Torque Estimation Based Virtual Crank Angle Sensor

2016-04-05
2016-01-1073
In engine management systems many calculations and actuator actions are performed in the crank angle domain. Most of these actions and calculations benefit from an improved accuracy of the crank angle measurement. Improved estimation of crank angle, based on pulse signals from an induction sensor placed on the flywheel of a heavy duty CI engine is thus of great importance. To estimate the crank angle the torque balance on the crankshaft is used. This torque balance is based on Newton’s second law. The net torque gives the flywheel acceleration which in turn gives engine speed and crank angle position. The described approach was studied for two crankshaft models: A rigid crankshaft approach and a lumped mass approach, the latter having the benefit of being able to capture the torsional effects of the crankshaft twisting and bending due to torques acting on it. These methods were then compared to a linear extrapolation of the engine speed, a common method to estimate crank angle today.
Technical Paper

Multi Layered Maps for Enhanced Environmental Perception

2011-09-13
2011-01-2244
Traditionally, an in-vehicle map consists of only one type of data, tailored for a single user function. For example, the navigation maps contain spatial information about the roads. On the other hand, a map built for adaptive cruise control use consists of the detected vehicles and their properties. In autonomous vehicle research, the maps are often built up as an occupancy grid where areas are classified as passable or impassable. Using these kinds of maps separately, however, is not enough to support the traffic safety enhancing and advanced driver assistance systems of today and tomorrow. Instead of using separate systems to handle individual safety or planning tasks, information could be stored in one shared map containing several correlated layers of information. Map information can be collected by any number of different sensor devices, and fusion algorithms can be used to enhance the quality of the information.
Technical Paper

Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine

2017-09-04
2017-24-0050
Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Technical Paper

Turbocharger Speed Estimation via Vibration Analysis

2016-04-05
2016-01-0632
Due to demanding legislation on exhaust emissions for internal combustion engines and increasing fuel prices, automotive manufacturers have focused their efforts on optimizing turbocharging systems. Turbocharger system control optimization is difficult: Unsteady flow conditions combined with not very accurate compressor maps make the real time turbocharger rotational speed one of the most important quantities in the optimization process. This work presents a methodology designed to obtain the turbocharger rotational speed via vibration analysis. Standard knock sensors have been employed in order to achieve a robust and accurate, yet still a low-cost solution capable of being mounted on-board. Results show that the developed method gives an estimation of the turbocharger rotational speed, with errors and accuracy acceptable for the proposed application. The method has been evaluated on a heavy duty diesel engine.
Technical Paper

Acoustic Characterization of Shallow Flow Reversal Chambers

2011-05-17
2011-01-1519
Flow reversal chambers are common design elements in mufflers. Here an idealized flow reversal chamber with large cross-section but small depth has been studied. The inlet and outlet ducts as well as the cross-sectional area are fixed while the depth of the chamber can be varied. The resulting systems are then characterized experimentally using the two-microphone wave decomposition method and compared with results from both finite element modeling and various approaches using two-port elements. The finite element modeling results are in excellent agreement with the measurements over the whole frequency range studied, while two-port modeling can be used with engineering precision in the low frequency range. The influence of mean flow was studied experimentally and was shown to have relatively small influence, mainly adding some additional losses at low frequencies.
Technical Paper

An Experimental Study of the Influence of Variable In-Cylinder Flow, Caused by Active Valve Train, on Combustion and Emissions in a Diesel Engine at Low Lambda Operation

2011-08-30
2011-01-1830
Spray and mixture formation in a compression ignition engine is of paramount importance for diesel combustion. In engine transient operation, when the load increases rapidly, the combustion system needs to handle low lambda (λ) operation while avoiding high particle emissions. Single-cylinder tests were performed to evaluate the effect of differences in cylinder flow on combustion and emissions at typical low λ transient operation. The tests were performed on a heavy-duty single-cylinder test engine with Lotus Active Valve Train (AVT) controlling the inlet airflow. The required swirl number (SN) and tumble were controlled by applying different inlet valve profiles and opening either both inlet valves or only one or the other. The operating point of interest was extracted from engine transient conditions before the boost pressure was increased and investigated further at steady state conditions.
Technical Paper

Heat Release Based Virtual Combustion Sensor Signal Bias Sensitivity

2017-03-28
2017-01-0789
Typically, the combustion in an internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens the possibility to introduce a virtual combustion sensor. This virtual sensor is a possible enabler for closed-loop combustion control and thus the possibility to counteract the effects of engine part to part variation, component ageing and fuel quality diversity. The extent to which these effects can be counteracted is determined by the detection limits of the virtual combustion sensor. To determine the limitation of the virtual combustion sensor, a virtual combustion sensor system was implemented based on a one-zone heat-release analysis, including the signal processing of the pressure sensor input. The typical error sources in a heavy-duty engine were identified and quantified. The virtual combustion sensor system was presented with flawed signals and the sensor’s sensitivities to the errors were quantified.
Technical Paper

Influence of Small Pilot on Main Injection in a Heavy-Duty Diesel Engine

2017-03-28
2017-01-0708
Factors influencing the effect of pilot-injection on main-injection combustion were investigated using heat release analysis in a heavy-duty diesel engine fuelled with standard diesel fuel, and included the effect of those factors on engine performance and emissions. Combinations of pilot injection parameters i.e. pilot start of injection, pilot mass, pilot-main injection separation, and rail pressure were studied for various operating conditions and combustion phases. It was concluded that the effect of pilot-injection combustion on main injection can be studied based on the phase of pilot combustion at the start of main injection. Four cases were identified: a) main injection during the mixing phase of pilot injection; b) main injection during the premixed phase of pilot combustion; c) main injection during the diffusive phase of pilot combustion and d) main injection after pilot combustion was completed.
X