Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Understanding the Effect of Inhomogeneous Mixing on Knocking Characteristics of Iso-Octane by Using Rapid Compression Machine

2018-04-03
2018-01-0212
As fuel injection strategies in spark-ignition (SI) engines have been diversified, inhomogeneous mixing of the fuel-air mixture can occur to varying extents during mixture preparation. In this study, we analyzed the effect of inhomogeneous mixing on the knocking characteristics of iso-octane and air mixture under a standardized fuel testing condition for research octane number (RON), based on ASTM D2699. For this purpose, we assumed that both lean spots and rich spots existed in unburned gas during compression stroke and flame propagation and calculated the thermodynamic state of the spots by using an in-house multi-zone, zero-dimensional SI engine model. Then, the ignition delay was measured over the derived thermodynamic profiles by using rapid compression machine (RCM), and we calculated ξ, the ratio of sound speed to auto-ignition propagation speed, based on Zel’dovich and Bradley’s ξ − ε theory to estimate knock intensity.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

A Study on Vortex Shedding Around a Bluff Body Near the Ground

2003-03-03
2003-01-0652
A series of experiments and computational analysis were carried out on the flow around a bluff body. Some non-streamlined ground vehicles, buildings and pipelines near to the ground could encounter very dangerous situations because of the unsteady wind loading caused by the periodic vortex shedding behind the bluff body. A two-dimensional bluff body model was used to simulate flow in the wake region. Spectral analysis of the velocity profiles in the underbody region was also used to examine the influence of the underbody flow in the wake region. By using a flow visualization technique, the critical gap height and the separation line on the ground were investigated for various gap heights and boundary layer thicknesses. Additionally, the 2-D Incompressible Navier-Stokes equation with an ε - SST (Strain Shear Stress Transport) turbulence model was used for comparison with experimental results.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

Study of LES Quality Criteria in a Motored Internal Combustion Engine

2017-03-28
2017-01-0549
In recent years, Large-Eddy Simulation (LES) is spotlighted as an engineering tool and severe research efforts are carried out on its applicability to Internal Combustion Engines (ICEs). However, there is a general lack of definitive conclusions on LES quality criteria for ICE. This paper focuses on the application of LES quality criteria to ICE and to their correlation, in order to draw a solid background on future LES quality assessments for ICE. In this paper, TCC-III single-cylinder optical engine from University of Michigan is investigated and the analysis is conducted under motored condition. LES quality is mainly affected by grid size and type, sub-grid scale (SGS) model, numeric schemes. In this study, the same grid size and type are used in order to focus on the effect on LES quality of SGS models and blending factors of numeric scheme only.
Technical Paper

A Quasi-Dimensional Model for Prediction of In-Cylinder Turbulence and Tumble Flow in a Spark-Ignited Engine

2018-04-03
2018-01-0852
Improving fuel efficiency and emission characteristics are significant issues in engine research. Because the engine has complex systems and various operating parameters, the experimental research is limited by cost and time. One-dimensional (1D) simulation has attracted the attention of researchers because of its effectiveness and relatively high accuracy. In a 1D simulation, the applied model must be accurate for the reliability of the simulation results. Because in-cylinder turbulence mainly determines the combustion characteristics, and mean flow velocity affects the in-cylinder heat transfer and efficiency in a spark-ignited (SI) engine, a number of sophisticated models have been developed to predict in-cylinder turbulence and mean flow velocity. In particular, tumble is a significant factor of in-cylinder turbulence in SI engine.
Technical Paper

Radiative Heat Transfer in Non-Gray Finite Cylindrical Media with Internal Heat Generations

1989-11-01
891332
Radiative heat transfer analysis in a finite cylindrical enclosure with non-gray media and internal heat generations have been conducted. Solutions are generated by a recently developed spherical harmonics method for a finite cylindrical configuration with the weighted sum of gray gases model. Numerical solutions are obtained for temperature and heat flux distributions with the variations of optical thickness and wall emissivity. The results show that with an increase in the absorption coefficient, the heat flux distribution along the lateral wall becomes symmetric regardless of the source distributions. The dependence of heat flux on the wall emissivity is reduced as well. The present solution technique seems to be easily extended to the coupled mode of heat transfer with convection in an engine cylinder.
Technical Paper

Reduced-Order modeling of Icing CFD data for Uncertainty Quantification of Icing Wind tunnel Experiments

2023-06-15
2023-01-1472
During icing wind tunnel experiments, the calibration process of the spray nozzle and aerothermal systems introduces experimental uncertainty that can potentially compromise the reliability of the test results. Therefore, performing sensitivity analysis (SA) or uncertainty quantification (UQ) studies is not only essential to determine the influence of uncertainties on the ice shape and aerodynamic performance but also crucial to identify the most significant icing parameter uncertainty. However, given the wide range of icing envelopes, it is not practical to conduct SA and UQ by experimental method because a lot of evaluations are required for SA and UQ study. In this study, we addressed these challenges by using a deep learning-based reduced-order modeling technique.
Technical Paper

Development of Fault Detection and Emergency Control for Application to Autonomous Vehicle

2021-04-06
2021-01-0075
This paper describes a failsafe system of automated driving vehicles. The failsafe system consists of the following two parts: sliding mode observer-based environment sensor, chassis sensor fault detection, and emergency deceleration control. Two sliding mode observers are designed to reconstruct the fault of acceleration and environment sensor(Lidar) in a longitudinal direction. In the environment sensor's fault detection part, the longitudinal vehicle model receives clearance and relative velocity values. Therefore, failure diagnosis is possible regardless of environmental sensors, such as radar, lidar, and camera. This paper's sensor data is the failure of Delphi's Electronically Scanning Radar (ESR) and Ibeo's LUX Lidar installed in an autonomous vehicle. The emergency deceleration control algorithm employs the sliding mode control with adaptive convergence time. In the event of a failure, it is significant to control the vehicle within a short period safely.
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
X