Refine Your Search

Topic

Search Results

Journal Article

Lateral Control for Automated Vehicle Following System in Urban Environments

2014-04-01
2014-01-0161
In contrast to highway, there are some sections not well maintained in urban roads. In these sections, there may be faint lane marks or static obstacles due to construction or some other reasons. Therefore, an automated vehicle following system such as traffic jam assistant should consider these sections to guarantee the safety of the system. In order to achieve this purpose, a model predictive control (MPC) scheme has been developed. The objectives of MPC are to compute the sequence of optimal steering input for vehicle following with obstacle avoidance. For this, the MPC uses the lead vehicle's state and obstacle's position obtained by lidars. For this purpose, a simplified nonlinear model of the vehicle was used to predict the future evolution of the system. Based on this prediction, performance index is optimized under operating constraints at each time step. A test vehicle equipped with two lidars on left and right corner of the front bumper has been developed.
Technical Paper

Prediction of Hybrid Electric Bus Speed Using Deep Learning Method

2020-04-14
2020-01-1187
The recent development pace of the automotive technology is so rapid worldwide. Especially in a green car, hybrid electric vehicles (HEVs) have been studied a lot due to their significant effects on the urban driving. In the vehicle energy management strategy study, the driving speed is assumed to be known in advance, however the speed is not given in a real world. Accordingly, the prediction of vehicle speed is very important. In this study, we study the prediction methodology for the speed prediction using deep learning. Based on the vehicle driving speed data, the supervised deep learning has been used and the speed prediction accuracy using deep learning shows accurate results comparing to the actual speed. The supervised deep learning is used which is suitable for driving cycle database. As a result, the speed prediction after few seconds is feasible.
Journal Article

Control Analysis and Thermal Model Development for Plug-In Hybrid Electric Vehicles

2015-04-14
2015-01-1157
For electrified vehicles, understanding the impact of temperature on vehicle control and performances becomes more important than before because the vehicle might consume more energy than conventional vehicles due to lack of the engine waste heat. Argonne has tested many advanced vehicles and analyzed the vehicle level control based on the test data. As part of its ongoing effort, Toyota Prius Plug-in Hybrid was tested in thermal environmental chamber, and the vehicle level control and performances are analyzed by observing the test results. The analysis results show that the control of the Plug-in Hybrid Electric Vehicle (PHEV) is similar with Prius Hybrid Electric Vehicle (HEV) when the vehicle is under a charge sustaining mode, and the vehicle tries to consume the electric energy first under a charge depleting mode.
Journal Article

Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension

2009-04-20
2009-01-0437
This paper describes a driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consists of four parts; speed controller for tracking of the desired speeds, yaw rate controller which computes a yaw moment input to track desired yaw rates, longitudinal tire force distribution which determines an optimal desired longitudinal tire force and wheel torque controller which determines a wheel torque command at each wheel to keep slip ratio at each wheel below a limit value as well as track the desired tire force. Longitudinal and vertical tire force estimators are designed for optimal tire force distribution and wheel slip control. The dynamic model of RVAS for simulation study is validated using vehicle test data.
Journal Article

Aerodynamic Drag Reduction of Ahmed Model Using Synthetic Jet Array

2013-03-25
2013-01-0095
As speed of ground vehicle increases, there are increased concerns on the aerodynamic drag reduction of ground vehicle. Recently, synthetic jet is emerging as a promising active flow control technology for aerodynamic drag reduction. In this paper, we performed an experimental parametric study on synthetic jet for aerodynamic drag reduction of Ahmed model. Synthetic jet array is constructed by twelve synthetic jet actuators, and installed on two kinds of Ahmed models, of which slant angles are 25° and 35°. The jets are emanated between the roof and the rear slant surface. Jet angle, momentum coefficient, and driving frequency are changed to assess the effect of synthetic jet array on aerodynamic drag. To quantify the effect of synthetic jet, the aerodynamic drag and rear surface pressure are measured and analyzed. From the result, the effect of synthetic jet actuation on aerodynamic drag differs according to the slant angle of the body.
Journal Article

Understanding the Effect of Inhomogeneous Mixing on Knocking Characteristics of Iso-Octane by Using Rapid Compression Machine

2018-04-03
2018-01-0212
As fuel injection strategies in spark-ignition (SI) engines have been diversified, inhomogeneous mixing of the fuel-air mixture can occur to varying extents during mixture preparation. In this study, we analyzed the effect of inhomogeneous mixing on the knocking characteristics of iso-octane and air mixture under a standardized fuel testing condition for research octane number (RON), based on ASTM D2699. For this purpose, we assumed that both lean spots and rich spots existed in unburned gas during compression stroke and flame propagation and calculated the thermodynamic state of the spots by using an in-house multi-zone, zero-dimensional SI engine model. Then, the ignition delay was measured over the derived thermodynamic profiles by using rapid compression machine (RCM), and we calculated ξ, the ratio of sound speed to auto-ignition propagation speed, based on Zel’dovich and Bradley’s ξ − ε theory to estimate knock intensity.
Technical Paper

Systematic Automotive Wiring Guideline Based on Coupling Theory

2007-04-16
2007-01-0519
This paper introduces a systematic wiring guideline which includes coupling noise calculation, wire layout design, and wire type selection methodologies. The coupling theory between wires has been introduced long time ago but it was not successfully applied to real automotive wiring design due to the complexity in the theory such as large number of parameters and many different conditions in automotive wiring environment. In this paper, the complexity is reduced by separating physical parameters and electrical parameters and identifying controllable parameters and given parameters. This paper first introduces parameters which are used in the coupling equations and automotive wiring design, then the coupling noise calculation method which uses the coupling equations is introduced. The systematic automotive wiring guideline which prevents noise problem in various design stage such as system filter design, wire layout design, wire type selection is introduced.
Technical Paper

Development of a MEMS-based Acceleration Sensing Module for Electronic Stability Program

2007-08-05
2007-01-3578
This paper describes our development work for acceleration sensing modules for electronic stability program (ESP) applications. The accelerometer is fabricated using the unique sacrificial/bulk micromachining (SBM) process by us. The sensing modules are designed to measure low level accelerations accurately and be stable in an automotive environment. This paper describes the accelerometer design and fabrication, electronic circuits and PCB design, module assembly, and performances of the developed sensing module. The developed sensing module offers analog voltage output with ±1.5g dynamic range, 0.05% nonlinearity, >50Hz bandwidth and 1295mV/g scale factor. The module includes a CAN2.0A interface and yields good experimental performance when implemented on a CAN test server.
Technical Paper

Characteristics of Syngas Combustion Based on Methane at Various Reforming Ratios

2007-08-05
2007-01-3630
Characteristics of syngas combustion at various reforming ratios were studied numerically. The syngas was formed by the partial oxidation of methane to mainly hydrogen and carbon monoxide and cooled to ambient temperature. Stiochiometric and lean premixed flames of the mixtures of methane and the syngas were compared at the atmospheric temperature and pressure conditions. The adiabatic flame temperature decreased with the reforming ratio. The laminar burning velocity, however, increased with the reforming ratio. For stretched flames in a counterflow, the high temperature region was broadened with the reforming ratio. The maximum flame temperature decreased with the reforming ratio for the stoichiometric case, but increased for the lean case except for the region of very low stretch rate. The extinction stretch rate increased with the reforming ratio, implying that the syngas assisted flame is more resistance to turbulence level.
Technical Paper

Three Types of Simulation Algorithms for Evaluating the HEV Fuel Efficiency

2007-04-16
2007-01-1771
In regard to the evaluation of the performance of a hybrid electric vehicle (HEV), there are as many simulation methods as there are developers or researchers. They adopt different operational algorithms and they use diverse techniques to realize their logic. However, the relation among the various simulation methods has not been clearly defined. Thus, it is not easy to choose a method that would bring the best consequences in the most efficient way. Here, we present three types of backward-looking simulation algorithms for evaluating the fuel efficiency of a power-split HEV. Then the results and cost-effectiveness of each algorithm are analyzed using various component ratings over a representative driving mode. Based on the comparative analysis, the algorithm that uses equivalent fuel consumption is shown to be highly cost-effective. Also, an inductive or empirical base is set up with the results for a component sizing methodology using the recommended simulation.
Technical Paper

A Screening Attenuation Evaluation Method for HEV Power Cable

2008-04-14
2008-01-1476
This paper proposes a new screening attenuation evaluation method (PHSA) for hybrid power cables. Hybrid power cables connect battery, inverter and motor. As the noise and shield characteristics of these cables are different from general communication shield wires, new method for evaluating screening attenuation is needed. We considered the radiation direction, noise current path and various load terminations to evaluate the screening attenuation which is different from standard screening attenuation measurement. Feasibility and effectiveness of the proposed method were verified with real experiment results.
Technical Paper

Wire Segment Error Locating Algorithm for Wiring Connection Verification Tool

2008-04-14
2008-01-0408
Due to increasing amount of modules and customized options in commercial vehicles, it becomes more and more difficult to verify the circuit design. In this paper, a wire segment error locating algorithm is proposed to automate the exact wire segment error locating process. When a wrong connection is found by existing tool, guided by the exact description of wire segment error, this algorithm can locate exact wire segment error in the connection by searching for the one that has at least one neighboring segment from a correct connection.
Technical Paper

Study of a Stratification Effect on Engine Performance in Gasoline HCCI Combustion by Using the Multi-zone Method and Reduced Kinetic Mechanism

2009-06-15
2009-01-1784
A gasoline homogeneous charged compression ignition (HCCI) called the controlled auto ignition (CAI) engine is an alternative to conventional gasoline engines with higher efficiency and lower emission levels. However, noise and vibration are currently major problems in the CAI engine. The problems result from fast burning speeds during combustion, because in the CAI engine combustion is controlled by auto-ignition rather than the flame. Thus, the ignition delay of the local mixture has to vary according to the location in the combustion chamber to avoid noise and vibration. For making different ignition delays, stratification of temperature or mixing ratio was tested in this study. In charge stratification, which determines the difference between the start of combustion among charges with different properties, two kinds of mixtures with different properties flow into two intake ports.
Technical Paper

Application of Functional Design Method to Road Vehicle Aerodynamic Optimization in Initial Design Stage

2009-04-20
2009-01-1166
Exterior shape of automobile can be represented by shape function through this study so that aerodynamic shape parameters can be easily controlled and changed. Also ordinary geometric information can be extracted easily from shape function model by simple calculations. It is possible to predict the aerodynamic performance of functional virtual car models which are transformed continually by developing automated program in initial design stage that includes all of above process. Innovative vehicle design process with exterior design guide will be proposed for stylist, engineer and packaging department in order to achieve low aerodynamic drag and high fuel efficiency targets.
Technical Paper

An Investigation into Unified Chassis Control based on Correlation with Longitudinal/Lateral Tire Force Behavior

2009-04-20
2009-01-0438
This paper presents a Unified Chassis Control (UCC) strategy to improve vehicle stability and maneuverability by integrating Electronic Stability Control (ESC) and Active Front Steering (AFS). The UCC architecture consists of two parts: an estimator and a controller. The estimator is designed to estimate longitudinal and lateral tire forces and the controller is designed in two stages, namely, an upper level controller and a lower level controller. The upper level controller, provides the desired yaw moment for vehicle lateral stability by adopting a sliding control method. The lower level controller, provides the integration method of the AFS and ESC strategies for the desired yaw moment and is designed by optimal tire force coordination.
Technical Paper

A Study on Vortex Shedding Around a Bluff Body Near the Ground

2003-03-03
2003-01-0652
A series of experiments and computational analysis were carried out on the flow around a bluff body. Some non-streamlined ground vehicles, buildings and pipelines near to the ground could encounter very dangerous situations because of the unsteady wind loading caused by the periodic vortex shedding behind the bluff body. A two-dimensional bluff body model was used to simulate flow in the wake region. Spectral analysis of the velocity profiles in the underbody region was also used to examine the influence of the underbody flow in the wake region. By using a flow visualization technique, the critical gap height and the separation line on the ground were investigated for various gap heights and boundary layer thicknesses. Additionally, the 2-D Incompressible Navier-Stokes equation with an ε - SST (Strain Shear Stress Transport) turbulence model was used for comparison with experimental results.
Technical Paper

A Study on the Refinement of Turbulence Intensity Prediction for the Estimation of In-Cylinder Pressure in a Spark-Ignited Engine

2017-03-28
2017-01-0525
The role of 1D simulation tool is growing as the engine system is becoming more complex with the adoption of a variety of new technologies. For the reliability of the 1D simulation results, it is necessary to improve the accuracy and applicability of the combustion model implemented in the 1D simulation tool. Since the combustion process in SI engine is mainly determined by the turbulence, many models have been concentrating on the prediction of the evolution of in-cylinder turbulence intensity. In this study, two turbulence models which can resemble the turbulence intensity close to that of 3D CFD tool were utilized. The first model is dedicated to predicting the evolution of turbulence intensity during intake and compression strokes so that the turbulence intensity at the spark timing can be estimated properly. The second model is responsible for predicting the turbulence intensity of burned and unburned zone during the combustion process.
Technical Paper

Model Predictive Control based Automated Driving Lane Change Control Algorithm for Merge Situation on Highway Intersection

2017-03-28
2017-01-1441
This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

A Study of an Active Rear Diffuser Device for Aerodynamic Drag Reduction of Automobiles

2012-04-16
2012-01-0173
The goal of this study is to develop an actively translating rear diffuser device to reduce the aerodynamic drag experienced by passenger cars. The feature of this device is hidden under the rear bumper ordinarily not to ruin the external design of the car and slips out backward under the high-speed driving condition. By this study, a movable arc-shaped semi-diffuser device is designed to maintain the streamlined automobile rear underbody configuration. It's installed under the rear bumper of a passenger car. Seven types of rear diffuser devices whose positions, slid out lengths and widths are differing with the basic shape installed in the rear bumper section of a passenger car and performed Computational Fluid Dynamics (CFD) analyses under rotating wheel and moving ground conditions. The main purpose of this study is that explains the aerodynamic drag reduction mechanism of a passenger car via an actively translating rear diffuser device at a high speed driving condition.
X