Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a MEMS-based Acceleration Sensing Module for Electronic Stability Program

2007-08-05
2007-01-3578
This paper describes our development work for acceleration sensing modules for electronic stability program (ESP) applications. The accelerometer is fabricated using the unique sacrificial/bulk micromachining (SBM) process by us. The sensing modules are designed to measure low level accelerations accurately and be stable in an automotive environment. This paper describes the accelerometer design and fabrication, electronic circuits and PCB design, module assembly, and performances of the developed sensing module. The developed sensing module offers analog voltage output with ±1.5g dynamic range, 0.05% nonlinearity, >50Hz bandwidth and 1295mV/g scale factor. The module includes a CAN2.0A interface and yields good experimental performance when implemented on a CAN test server.
Technical Paper

Fatigue Life Analysis of Automotive V-belt Pulley

2007-08-05
2007-01-3729
Fatigue life of a V-belt pulley, which is commonly used in automotive powertrain to transfer power to other parts, is predicted based on damage analysis by finite element analysis (FEA). Load conditions on pulley are analyzed by considering interactions among the pulley, V belt, bracket and bolts. Both normal force and traction force on the contact surfaces between the pulley and V belt were calculated. Assembly load due to the tightening of the bolts as well as operation load was considered to describe the actual load conditions in durability test. Static analysis at initial position of the pulley after assembly was performed with given load conditions. As the pulley rotated every ten degrees, consecutive static analyses were followed to find out the stress history of the pulley during operation. Using stress history data calculated from FE analysis, damage over one rotation of pulley was calculated and fatigue life, number of rotation to failure, was estimated.
Technical Paper

An Effective Logical Wire Connection Verification Algorithm for Automotive Wiring System

2008-04-14
2008-01-1274
As the number of user selectable electrical modules increases for passenger car, the number of cars with different combinations of option can easily exceed 100,000 cars. It results to a situation where we can not manually verify all the logical connection by making wiring combinations for each car. In this paper, we propose an algorithm that can reduce verification time for all possible wiring with available option combinations. The algorithm separates the whole wiring circuits into independent circuits and verifies the logical connections for each independent circuit with all possible options. The algorithm is time effective so the required time to verify the connections increases logarithmically as the number of possible car increases. The algorithm was implemented as software verification tool and its effectiveness was proved to be feasible.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Technical Paper

Development of Ground Level Simulation Tool for Automotive Applications

2006-04-03
2006-01-0371
This paper describes the ground system model and algorithm for a ground level simulation tool. First, the modeling of an automotive ground system will be discussed and the algorithm for a simulation tool will be explained. We divided the model into a ground tree and a ground body. The ground tree model consists of resistance formed by the wires that connect the load to ground point with various structures and the ground body model consists of resistance between ground points in the car body. The wires with large current, such as engine ground cable, was modeled in detail by dividing the resistance into wire, bolt, and clamping resistance, in order to simulate the effect of increased contact resistance after durability test. The algorithm of the ground level simulation tool was designed to adjust the currents of the alternator, battery, and ground points in order to evaluate the various driving and load conditions.
Technical Paper

The Study on the Optimization of Attachment Stiffness in Vehicle Body

2007-05-15
2007-01-2346
The achievement of improved NVH performance with light weighted body and low cost is very important, but difficult job to be accomplished in vehicle development. One of the various methods for the accomplishment of this goal is the optimization of the stiffness attached to a vehicle body and chassis. It is known that sufficient stiffness at the body attachments improves the flexibility of bushing rate tuning. In this paper, the theoretical consideration and analysis tool to estimate local stiffness value quantitatively are introduced. Also, the local stiffness values at various attachment locations in trimmed body are measured. The operational forces at body attachments are estimated through the TPA (Transfer Path Analysis). The suitability of attachment stiffness is judged based on the required NVH target to attain the optimal attachment stiffness in vehicle body.
X