Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Analyzing the Cycle-to-Cycle Variations of Vapor and Liquid Phases of Evaporating SIDI Sprays via Proper Orthogonal Decomposition Technique

2015-09-01
2015-01-1901
In this study, the spray characteristics of three multi-hole injectors, namely a 2-hole injector, a 4-hole injector, and a 6-hole injector were investigated under various superheated conditions. Fuel pressure was kept constant at 10MPa. Fuel temperature varied from 20°C to 85°C, and back pressure ranged from 20kPa to 100kPa. Both liquid phase and vapor phase of the spray were investigated via laser induced exciplex fluorescence technique. Proper orthogonal decomposition technique was applied to analyze the cycle-to-cycle variations of the liquid phase and vapor phase of the fuel spray separately. Effects of fuel temperature, back pressure, superheated degree and nozzle number on spray variation were revealed. It shows that higher fuel temperature led to a more stable spray due to enhanced evaporation which eliminated the fluctuating structures along the spray periphery. Higher back pressure led to higher spray variation due to increased interaction between spray and ambient air.
Technical Paper

Influence of the Injector Configuration on the Spray Evaporation Characteristics under Superheated Conditions

2015-09-01
2015-01-1900
In spark ignition direct injection (SIDI) engines, the injector configuration plays an important role on influencing the spray atomization and evaporation. In order to optimize the injector configuration to generate a better fuel spray, the further study to understand the effect of injector configuration is needed. In this study, the influence of the hole length to diameter ratio (L/D) on the fuel spray evaporation is investigated in a constant volume chamber under various operating conditions. The laser induced exciplex fluorescence (LIEF) technique is utilized to capture the vapor fluorescence signal of fuel spray. The fuel sprays with the fuel temperature ranging from 45°C to 85°C and ambient pressure ranging from 20kPa to 100kPa are investigated to study the influences of superheated degree (SD) on the spray evaporation.
X