Refine Your Search

Topic

Search Results

Technical Paper

Transient Characteristics of Combustion and Emissions during Start up at Higher Cranking Speed in a PFI Engine for HEV Application

2008-10-06
2008-01-2420
The transient characteristics of combustion and emissions during the engine start up at different higher cranking speeds for hybrid electric vehicle (HEV) applications were presented in this paper. Cycle-by-cycle analysis was done for each start up case. Intake air mass during the first several cycles decrease as the engine was cranked at higher speed. Ignition timing is delayed with higher cranking speed, which leads to an increase of exhaust temperature. For various start up cases, similar quantity of fuel is injected at the first cycle, but the ignition timing is significantly delayed to meet the acceleration requirement when cranking speed enhanced. Because of the deterioration of intake charge, the air-fuel mixture is over-enriched in the first several cycles for the cases at higher cranking speed. With cranking speed is increased, the in-cylinder residual gas fraction rises, which leads to poor combustion and decrease of mass fraction of burned fuel.
Technical Paper

Flow Field Characterization of Superheated Sprays from a Multi-Hole Injector by Using High-Speed PIV

2012-04-16
2012-01-0457
Superheated spray is expected to improve the fuel atomization and evaporation processes by introducing fuel temperature as a new control parameter in spark-ignited direct-injection (SIDI) engines. In this study, flow fields of n-hexane spray from a multi-hole injector in both vertical and cross-sectional directions were investigated by using high-speed particle image velocimetry (HS-PIV) within the lower density regions. The results provide insight to the spray-collapsing processes under various superheated conditions. It was found that in axial direction, the vertical velocity increases while the radial velocity decreases with increasing superheat degree, which determines the convergent spray structure. In cross-sectional direction, the dynamic variation of the spray structure and interaction among spray plumes were investigated. The relationship between the spray structure and flow field was found. The flow patterns during and after the injection are significantly different.
Technical Paper

Flame Area Correlations with Heat Release at Early Flame Development of Combustion Process in a Spark-Ignition Direct-Injection Engine Using Gasoline, Ethanol and Butanol

2013-10-14
2013-01-2637
As the vehicle emission regulations become stricter worldwide, one way to meet the emission requirements is to engage the use of alternative fuels in engine combustion. In this investigation, the early combustion processes of regular gasoline and alternative fuels, including ethanol and butanol, were studied by simultaneously recording both the in-cylinder pressure and the crank angle-resolved high-speed flame images in a single-cylinder spark-ignition direct-injection engine. The engine was equipped with a quartz insert in the piston which provided an optical access to its cylinder through the piston. The effects of engine coolant & oil temperatures and intake air swirl ratio on the early flame development were also studied. The heat release was derived from the in-cylinder pressure measurements and the corresponding flame area characteristics were extracted from the images.
Technical Paper

One Better Model of Vehicle Turbocharged Diesel Engine than VNT Turbo

2014-04-01
2014-01-1644
In the internal combustion engine, about 25%-40% of the energy released by burned fuel is taken away by the exhaust gas. The part of the usable energy in the exhaust can be used in the turbocharged engine. So, at present, turbocharged diesel engine hasn't made full use of exhaust gas energy. The authors propose a model of the 4-stroke turbocharged diesel engine of split exhausting system. Adding a rapidly on-and-off exhaust control valve between exhaust passage and manifold in the 4-stroke turbocharged diesel engine can improve the utilization rate of the usable energy in the exhaust. By utilizing the mean effective pressure (MEP), this paper is to calculate the maximum usable energy, the energy provided by exhaust and the energy required by intake. The results gets that the new type of exhausting system can help engine to increase usage rate of the exhaust gas energy to around 20% at the rated condition compared to the existing vehicle diesel engines with VNT.
Technical Paper

Life Cycle Land Requirement, Energy Consumption and GHG Emissions of Biodiesel Derived from Microalgae and Jatropha curcas Seeds in China

2014-04-01
2014-01-1964
The aim of this study is to evaluate the land requirement, energy consumption and GHG (greenhouse gases) emissions of microalgal biodiesel (M-BD) and Jatropha curcas seeds (J-BD) based biodiesel from the perspective of life cycle assessment (LCA). Mass and energy balance was used through the whole LCA calculation for each process. Two types of biodiesel (100% biodiesel: BD100, and 20% blends of biodiesel: BD20) were assumed to be combusted in the suitable diesel engine. Displacement method was adopted to measure the co-products credits. The results showed that the land requirement of producing 1 kg biodiesel from microalgae was about 1/31 of that from Jatropha curcas seeds. The well to pump (WTP) stage for microalgal biodiesel had higher fossil energy requirement but lower petroleum energy consumption and GHG emissions compared to Jatropha curcas and conventional diesel (CD). The WTP energy efficiency for J-BD100 and M-BD 100 were 26% and 17.4%, respectively.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Technical Paper

Experimental Research on Mixture Distribution of Diesel Premixed Low-Temperature Combustion

2015-09-01
2015-01-1839
The diesel premixed low-temperature combustion mode avoids the generation of thick mixture and the high temperature region in which a great amount of NOx and PM generates. It makes a significant reduction in the emissions of both NOx and PM available at the same time. However, with the quantity of pre-injection increases and the injection time advances, the emission of HC increases significantly, which causes a decrease in the combustion efficiency. Studies have shown that the flame quench caused by too thick or too lean mixture and the oil film on the chamber is the main source for the emission of HC. As a result, understanding the mechanism of atomization and evaporation of the fuel and the formation of the mixture makes significant sense. This paper focuses on the mixture formation process. And the methods of testing the distribution of the mixture, the influential factors and control methods are studied.
Technical Paper

Analysis of Thermal Efficiency Improvement of a Highly Boosted, High Compression Ratio, Direct-Injection Gasoline Engine with LIVC and EIVC at Partial and Full Loads

2015-09-01
2015-01-1882
The improvement mechanism of fuel consumption at partial and full loads of a boosted direction-injection gasoline engine with the elevated geometrical compression ratio and Miller cycle by either early or late intake valve closing (EIVC or LIVC) are analyzed based on the first law of thermodynamics and one dimensional engine simulation. An increase in geometric compression ratio increases the theoretical thermal efficiency for all the operating loads, but deteriorates the fuel economy at full loads, owing primarily to the full-load knock limit. Use of Miller cycle improves the fuel economy for both the partial and full load operations by reducing the pumping loss and optimizing the combustion phasing, respectively. A comparison between EIVC and LIVC on the influencing factors on the thermal efficiency at the partial load shows that EIVC leads to higher mechanical efficiency and less heat transfer loss than LIVC, and hence its efficiency improvement is superior over LIVC.
Technical Paper

Analysis of the Cycle-to-Cycle Variations of In-Cylinder Vortex Structure and Vorticity using Phase-Invariant Proper Orthogonal Decomposition

2015-09-01
2015-01-1904
The proper formation of fuel-air mixture, which depends to a large extend on the complex in-cylinder air flow, is an important criterion to control the clean and reliable combustion process in spark-ignition direct-injection (SIDI) engines. The in-cylinder flow vorticity field presents highly transient complex characteristics, and the corresponding vorticity field also evolves in the entire engine cycle from intake to exhaust strokes. It is also widely recognized that the vorticity field plays a key role in the in-cylinder turbulent field because it influences the air-fuel mixing and flame development process. In this investigation, the in-cylinder vortex structure and vorticity field characteristics are analyzed using the phase-invariant proper orthogonal decomposition (POD) method.
Technical Paper

Development of a POD-Based Analysis Approach for Quantitative Comparison of Spray Structure Variations in a Spark-Ignition Direct-Injection Engine

2013-10-14
2013-01-2545
Strong cycle-to-cycle variations of fuel spray are observed due to the highly transient in-cylinder airflow in spark-ignition direct-injection (SIDI) engine. The spray structure comparison based on ensemble-averaged image may be misleading sometimes because the spray images for the same engine running condition could be different from cycle to cycle. Also, the visual comparison of spray images from many cycles is only qualitative and very time-consuming. Therefore, the present paper provides a novel approach to make quantitative comparison of spray structures from different engine conditions, or comparison between experiment and simulation (such as large eddy simulation, LES). The methodology is based on the proper orthogonal decomposition (POD), which has been utilized for in-cylinder turbulent flow research for over a decade.
Technical Paper

Measurement of Temperature and Soot (KL) Distributions in Spray Flames of Diesel-Butanol Blends by Two-Color Method Using High-Speed RGB Video Camera

2016-10-17
2016-01-2190
Taking advantages of high speed RGB video cameras, the two-color method can be implemented with a relatively simple setup to obtain the temporal development of the two dimensional temperature and soot (KL) distributions in a reacting diesel jet. However, several issues such as the selection of the two wavelengths, the role of bandpass filters, and the proper optical settings, etc. should be known to obtain a reliable measurement. This paper, at first, discusses about the uncertainties in the measurement of temperature and KL distributions in the diesel flame by the two-color method using the high speed RGB video camera. Since n-butanol, as an alternative renewable fuel, has the potential application in diesel engines, the characteristic of spray combustion of diesel-butanol blends under the diesel-like ambient conditions in a pre-burning constant-volume combustion chamber is studied.
Technical Paper

Study on the Optimal Control Strategy of Transient Process for Diesel Engine with Sequential Turbocharging System

2016-10-17
2016-01-2157
Three-phase sequential turbocharging system with two unequal-size turbochargers is developed to improve fuel economy performance and reduce emission of the automotive diesel engine, which satisfies wide range of intake flow demand. However, it results in complicated transient control strategies under frequently changing operating conditions. The present work aims to optimize the control scheme of boost system and fuel injection and evaluate their contributions to the improvement of transient performance. A mean value model for diesel engine was built up in SIMULINK environment and verified by experiment for transient study. Then a mathematical model of optimization issue was established. Strategies of control valves and fuel injection for typical acceleration and loading processes are obtained by coupled calculating of the simulation model and optimization algorithm.
Technical Paper

A Feasibility Study of Using DI Butanol as an Ignition Source for Dual-Fuel Combustion

2017-03-28
2017-01-0770
The combustion of dual-fuel engines usually uses a pilot flame to burn out a background fuel inside a cylinder under high compression. The background fuel can be either a gaseous fuel or a volatile liquid fuel, commonly with low reactivity to prevent premature combustion and engine knocking; whereas the pilot flame is normally set off with the direct injection of a liquid fuel with adequate reactivity that is suitable for deterministic auto-ignition with a high compression ratio. In this work, directly injected butanol is used to generate the pilot flame, while intake port injected ethanol or butanol is employed as the background fuel. Compared with the conventional diesel-only combustion, dual-fuel operations not only broaden the fuel applicability, but also enhance the potential for clean combustion, in high efficiency engines. The amount of background fuel and the scheduling of pilot flame are investigated through extensive laboratory experiments.
Technical Paper

Distortion Mapping Correction of In-Cylinder Flow Field Measurements through Optical Liner Using Gaussian Optics Model

2017-03-28
2017-01-0615
Combustion efficiency of internal combustion engine is closely influenced by the air flow pattern in the engine cylinder. Some researchers use high-speed particle image velocimetry to visualize and measure the temporally and spatially resolved in-cylinder velocity flow fields in the optically assessable engine. However, the transparent cylindrical liner makes it difficult to accurately determine the particle displacements inside the cylinder due to the optically distorted path of scattering light from seeding particles through the curved liner. To correct for the distortion-induced error in the seeding particle positions through the optical liner, the distortion mapping function is modeled using the Gaussian optics theory. Two artificial flow patterns with 5 by 5 vectors were made to illustrate the mapping correction. Distortion-induced error of velocity vectors was precisely mapped in six different planes inside the cylinder.
Technical Paper

Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System

2017-03-28
2017-01-0821
High fuel injection pressure has been regarded as a key controlling factor for internal combustion engines to achieve good combustion performance with reduced emissions and improved fuel efficiency. For common-rail injection system (CRS) used in advanced diesel engines, fuel injection pressure can often be raised to beyond 200 MPa. Although characteristics of diesel spray has been thoroughly studied, little work has been done at ultra-high injection pressures. In this work, the characteristics of CRS diesel spray under ultra-high injection pressure up to 250 MPa was investigated. The experiments were conducted in an optically accessible high-pressure and high-temperature constant volume chamber. The injection pressure varied from 50 MPa to up to 250 MPa. Both non-evaporating condition and evaporating condition were studied. A single-hole injector was specially designed for this investigation.
Technical Paper

Multi-Objective Tolerance Optimization Considering Friction Loss for Internal Combustion Engines

2017-03-28
2017-01-0250
Manufacturing of the internal combustion engines (ICEs) has very critical requirements on the precision and tolerance of engine parts in order to guarantee the engine performance. As a typical complex nonlinear system, small changes in dimensions of ICE components may have great impact on the performance and cost of the manufacturing of ICES. In this regard, it is still necessary to discuss the optimization of the tolerance and manufacturing precision of the critical components of ICEs even though the tolerance optimization in general has been reported in the literature. A systematic process for determining optimal tolerances will overcome the disadvantages of the traditional experience-based tolerance design and therefore improve the system performance.
Technical Paper

Theoretical Study on Similarity of Diesel Combustion

2018-04-03
2018-01-0235
Based on the similarity theory and conservation equations, some of the important dimensionless numbers in diesel combustion are deduced and discussed. Existence of similarity is theoretically proved in diffusion (or mixing-controlled) combustion and premixed combustion as well as in spray mixture formation processes in different size diesel engines. With the prerequisite of geometric similarity, scaling rules for some parameters including engine speed, injection pressure and injection duration are established to realize the similarity between large-bore and small-bore diesel engines. To verify the similarity theories, the computational fluid dynamics (CFD) simulation are conducted, and three scaling rules, which keep the engine speed, injection pressure and lift-off length constant, respectively, are compared under the conditions of the light load (0.3 MPa IMEP) and high load (1.55 MPa IMEP) operations.
Technical Paper

Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion

2018-04-03
2018-01-0265
This paper examines the diesel-ethanol dual fuel combustion at medium engine loads on a single-cylinder research diesel engine with a compression ratio of 16.5:1. The effect of exhaust gas recirculation (EGR) and ethanol energy ratio was investigated for the dual fuel combustion to achieve simultaneously ultra-low NOx and soot emissions. A medium ethanol ratio of about 0.6 was found suitable to meet the requirements for mixing enhancement and ignition control, which resulted in the lowest NOx and soot emissions among the tested ethanol ratios. A double-pilot injection strategy was found competent to lower the pressure rise rate owing to the reduced fuel quantity in the close-to-TDC injection. The advancement of pilot injection timing tended to reduce the CO and THC emissions, which is deemed beneficial for high EGR operations. The reactivity mutual-modulation between the diesel pilot and the background ethanol mixture was identified.
Technical Paper

Influence of Early and Late Fuel Injection on Air Flow Structure and Kinetic Energy in an Optical SIDI Engine

2018-04-03
2018-01-0205
The turbulent in-cylinder air flow and the unsteady high-pressure fuel injection lead to a highly transient air fuel mixing process in spark-ignition direct-injection (SIDI) engines, which is the leading cause for combustion cycle-to-cycle variation (CCV) and requires further investigation. In this study, crank-angle resolution particle image velocimetry (PIV) was employed to simultaneously measure the air flow and fuel spray structure at 1300 rpm in an optically accessible single-cylinder SIDI engine. The measurement was conducted at the center tumble plane of the four-valve pent-roof engine, bisecting the spark plug and fuel injector. 84 consecutive cycles were recorded for three engine conditions, i.e. (1) none-fueled motored condition, (2) homogeneous-charge mode with start of injection (SOI) during intake (50 crank-angle degree (CAD) after top dead center exhaust, aTDCexh), and (3) stratified-charge mode with SOI during mid compression (270 aTDCexh).
Technical Paper

Tumble Vortex Characterization by Complex Moments

2018-04-03
2018-01-0207
Rotating flow inside an internal combustion engine cylinder is deliberately engineered for improved fuel-air mixing and combustion. The details of the rotating flow structure vary temporally over an engine cycle as well as cyclically at the same engine phase. Algorithms in the literature to identify these structural details of the rotating flow invariably focus on locating its center and, on occasion, measuring its rotational strength and spatial extent. In this paper, these flow structure parameters are evaluated by means of complex moments, which have been adapted from image (scalar field) recognition applications to two-dimensional flow pattern (vector field) analysis. Several additional detailed characteristics of the rotating flow pattern - the type and extent of its deviation from the ideal circular pattern, its rotational and reflectional symmetry (if exists), and thus its orientation - are also shown to be related to the first few low-order complex moments of the flow pattern.
X