Refine Your Search


Search Results

Viewing 1 to 9 of 9
Journal Article

Estimation on the Location of Peak Pressure at Quick Start of HEV Engine Employing Ion Sensing Technology

In this paper an estimation method on location of peak pressure (LPP) employing flame ionization measurement, with the spark plug as a sensor, was discussed to achieve combustion parameters estimation at quick start of HEV engines. Through the cycle-based ion signal analysis, the location of peak pressure can be extracted in individual cylinder for the optimization of engine quick start control of HEV engine. A series of quick start processes with different cranking speed and engine coolant temperature are tested for establishing the relationship between the ion signals and the combustion parameters. An Artificial Neural Network (ANN) algorithm is used in this study for estimating these two combustion parameters. The experiment results show that the location of peak pressure can be well established by this method.
Technical Paper

An Experimental Study of the Effects of Coolant Temperature on Particle Emissions from a Dual Injection Gasoline Engine

Euro VI emission standards have set a very strict limitation on particulate matter emissions of Gasoline Direct Injection (GDI) engine. It is difficult for GDI engine to meet the Euro VI PN regulation (6×1011#/km) without a series of complicated after-treatment devices such as Gasoline Particulate Filter (GPF). Previous research shows that GDI vehicles under cold start condition account for more than 50% of both particle number and mass emissions during the entire NEDC driving cycle. Dual Injection Gasoline engine is based on the GDI engine by adding a set of port fuel injection system. The good mixing characteristics of the port fuel injection system can help to reduce the particulate matter emissions of the GDI engine during the cold start condition.
Technical Paper

Simultaneous Measurement of the Flame Lift-Off Length on Direct Injection Diesel Sprays Using High Speed Schlieren Imaging and OH Chemiluminescence

Lift-off length is defined as the distance from injector hole to the location where flame stabilized on a high injection pressure direct injection (DI) diesel spray. In this paper we used the high-speed (40 kHz) Schlieren and time-averaged OH chemiluminescence imaging technique to simultaneously measure the flame lift-off locations on a DI diesel spray in an optically accessible and constant-volume combustion vessel. The time-resolved development of the diesel spray acquired from the high-speed Schlieren imaging system enabled us to observe the instantaneous spray structure details of the spray flames. The OH chemiluminescence image obtained from a gated, intensified CCD video camera with different delay and width settings was used to determine the quiescent lift-off length. Experiments were conducted under various ambient temperatures, ambient gas densities, injection pressures and oxygen concentrations.
Technical Paper

Effects of Spark Timing with Other Engine Operating Parameters on the Particulate Emissions of a Dualinjection Gasoline Engine During Warm-up Conditions

Gasoline direct injection (GDI) has been a mainstream technology due to its higher thermal efficiency and better power output. However, with increasingly stringent emission regulations introduced (EURO VI PN limits: 6 x l011#/km), high particulate matter (PM) emission of GDI engine has been a serious problem that limits its further development. Previous studies have found that cold-start and warm-up operation conditions play the dominant role in engine-out particulate emissions. In this paper, emission characteristics during the cold-start were first studied by controlling the coolant temperature. A Cambustion DMS500 fast particle spectrometer was employed to analyze the PM emissions. In order to reduce the engine-out emissions of cold-start, a dual injection system which combines port-fuel-injection (PFI) and direct-injection (DI) was applied in a four-cylinder gasoline engine.
Technical Paper

A High Reliable Automated Percussive Riveting System for Aircraft Assembly

Percussive riveting is a widely used way of fastening in the field of aircraft assembly, which used to be done manually. Nowadays, replacing the traditional percussive riveting with automated percussive riveting becomes a trend worldwide, which improves the quality of riveting significantly. For the automated riveting system used in aircraft assembly, reliability is of great importance, deserving to be deeply researched and fully enhanced. In this paper, a high reliable automated percussive riveting system integrated into a dual robot drilling and riveting system is proposed. The riveting system consists of the hammer part and the bucking bar part. And both parts have been optimized to enhance the reliability. In the hammer side, proximity switches are fully used to detect the state of rivet insertion.
Technical Paper

System Characteristics of Direct and Secondary Loop Heat Pump for Electrical Vehicles

The electricity energy consumption for passenger cabin heating can drastically shorten the driving range for electric vehicles in cold climates. Mobile heat pump system is considered as an effective method to improve heating efficiency. This study investigates the system characteristics of mobile heat pump systems for electrical vehicle application. Based on KULI thermal management software, simulation models including HFC-R134a direct heat pump (DHP) and secondary loop heat pump (SLHP) were developed. The secondary loop employed in the SLHP includes a coolant pump, an indoor heater core and a plate heat exchanger, instead of an indoor condenser in the DHP. The use of a secondary loop has advantages to improve air outlet temperature uniformity. The simulation models were verified by measured data obtained from calorimeter experiments. By adopting simulation models, the effects of indoor and outdoor temperatures on system performance and cycle characteristics were discussed.
Technical Paper

Improved Potential Field-Based Collision Avoidance Control for Autonomous Vehicles

Limiting factors for autonomous vehicle (AV) to be widely used are not only technical, but also psychological. Considering the psychological feelings of drivers during switching manned to unmanned driving status, this paper proposes an algorithm about avoiding collisions combining driver psychological feelings for AVs. The confidence-limit-distance of the driver is experimentally obtained by many real track tests which require the test driver to approach the obstacle as close as possible. The confidence-limit-distance from driver is defined as the distance between the obstacle and the last steering point allowed for the psychological limit of the driver to avoid collisions. Based on Artificial Potential Field (APF), a road potential field is accordingly established to characterize the characteristics and boundary constraints of the real road.
Technical Paper

Internal Model Control during Mode Transition Subject to Time Delay for Hybrid Electric Vehicles

With the rapid development of series-parallel hybrid electric vehicles (SPHEVs), mode transition from pure electrical drive to hybrid drive has attracted considerable attention. The presence of time delay due to response capacity of actuators and signal transmission of communication may cause decrease of speed tracking accuracy, even instable dynamics. Consequently, drivability of the SPHEV is unacceptable, and durability of the components is reduced. So far, plenty of control strategies have been proposed for mode transition, however, no previous research has been reported to deal with the time delay during mode transition. In this paper, a dynamic model with time delay of hybrid electric system is established. Next, a mode transition time-delay controller is proposed based on a two degree of freedom internal model controller (2-DOF-IMC).
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.