Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine

2007-10-29
2007-01-4004
Some automakers have been studying variable compression ratio (VCR) technology as one possible way of improving fuel economy. In previous studies, we have developed a VCR mechanism of a unique multiple-link configuration that achieves a piston stroke characterized by semi-sinusoidal oscillation and lower piston acceleration at top dead center than on conventional mechanisms. By controlling compression ratio with this multiple-link VCR mechanism so that it optimally matches any operating condition, the mechanism has demonstrated that both lower fuel consumption and higher output power are simultaneously possible. However, it has also been observed that fuel consumption does not reduce further once the compression ratio reached a certain level. This study focused on the fact that the piston-stroke characteristic obtained with the multiple-link mechanism is suitable to a longer stroke.
Technical Paper

Study on Parameters Affecting NMOG Measurements and a Method to Improve its Accuracy

1993-03-01
930387
Nissan has developed a non-methane organic gas (NMOG) emission measuring method based on California Air Resources Board (CARB) procedures.1) In addition, a system to analyze the chemical species present in the exhaust gases at Low Emission Vehicles (LEV) and Ultra Low Emission Vehicles (ULEV) levels has been created. It was found that when using an electrically heated catalyst (EHC) to achieve the low emissions for LEV and ULEV levels, the interference between exhaust HC species and the contamination of the analyzing system are a serious problem for the measurement of speciated emissions. The methyl tertiary butyl ether (MTBE) contained in reformulated gasoline can interfere with HC speciation in the Chromatogram, requiring that the automatically speciated results be checked by a trained operator. The low exhaust HC emissions of bags 2 and 3 in the Federal Test Procedure (FTP) are nearly equal to that of the background air utilized in the constant volume sampler (CVS) dilution.
Technical Paper

Effect of Catalyst Systems on Characteristics of Exhaust Hydrocarbon Species

1993-10-01
932718
The California Low-Emission Vehicle (LEV) standards mandate a reduction in non-methane organic gases (NMOG). With the aim of analyzing NMOG emissions, a comparison was made of the hydrocarbon species found in the exhaust gas when different types of catalyst systems and fuel specifications were used. NMOG emissions are usually measured by removing methane from the total hydrocarbon (THC) emissions and adding aldehyde and ketone emissions. The NMOG level found in this way is thus influenced by the rate of methane in THC emissions. Another important factor in the LEV standards is specific reactivity (SR), indicating the formation potential of ozone, which is one cause of photochemical smog. Specific reactivity is expressed by the amount of ozone generated per unit weight of NMOG emissions, and is affected by the respective proportion of hydrocarbon species in the total NMOG emissions.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
Technical Paper

A Study of a Gasoline-Fueled Near-Zero-Emission Vehicle Using an Improved Emission Measurement System

1998-10-19
982555
This paper concerns research on an emission control system aimed at reducing emission levels to well below the ULEV standards. As emission levels are further reduced in the coming years, it is projected that measurement error will increase substantially. Therefore, an analysis was made of the conventional measurement system, which revealed the following major problems. 1. The conventional analyzer, having a minimum full-scale THC range of 10 ppmC, cannot measure lower concentration emissions with high accuracy. 2. Hydrocarbons are produced in various components of the measurement system, increasing measurement error. 3. Even if an analyzer with a minimum full-scale THC range of 1 ppmC is used in an effort to measure low concentrations, the 1 ppmC measurement range cannot be applied when the dilution air contains a high THC concentration. This makes it impossible to obtain highly accurate measurements. 4.
Technical Paper

Development of New Technologies Targeting Zero Emissions for Gasoline Engines

2000-03-06
2000-01-0890
This paper describes new technologies for achieving exhaust emission levels much below the SULEV standards in California, which are the most stringent among the currently proposed regulations in the world. Catalyst light-off time, for example, has been significantly reduced through the adoption of a catalyst substrate with an ultra-thin wall thickness of 2 mil and a catalyst coating specifically designed for quicker light-off. A highly-efficient HC trap system has been realized by combining a two-stage HC trap design with an improved HC trap catalyst. The cold-start HC emission level has been greatly reduced by an electronically actuated swirl control valve with a high-speed starter. Further, an improved Air Fuel Ratio (AFR) control method has achieved much higher catalyst HC and NOx conversion efficiency.
X