Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Plasma Enhanced Selective Catalytic Reduction of NOx in Diesel Exhaust: Test Bench Measurements

1999-10-25
1999-01-3633
The potential of plasma enhanced selective catalytic reduction (PE-SCR) for Diesel-exhaust treatment at temperatures between 60 °C and 180 °C has been investigated in test bench measurements with a 1.9 liter 66 kW VW Passat TDI engine. Non-thermal plasmas were generated by pulsed electrical excitation of dielectric barrier discharge (DBD) modules each having a flow cross section of 9.5 cm2 and an electrode length of 26 cm. Monolithic V2O5-WO3/TiO2-catalysts with cell densities of 150 cpsi and 200 cpsi were used for selective catalytic reduction. First experiments were performed with a single DBD module and a catalyst volume of 3.5 liters. For temperatures between 100 °C and 160 °C and exhaust gas flow rates below 1200 liters (STP)/min NOx-reduction rates up to 14 g/h were obtained with an energy cost of about 20 Wh/g NOx. At larger gas flow rates NOx-reduction rates decreased even at higher temperatures.
Technical Paper

Urea-SCR System Demonstration and Evaluation for Heavy-Duty Diesel Trucks

1999-11-15
1999-01-3722
The Institute of Transportation Studies at the University of California, Davis (ITS-Davis) has brought together a group of public and industrial partners to demonstrate and evaluate the Siemens-Westinghouse Urea-Selective Catalyst Reduction System (SINOx™). The SINOx System has the potential to generate major reductions in nitrogen oxides (NOx) and the volatile organic fraction (VOF) of particulate (PM) from heavy-duty diesel engines, without increasing fuel consumption and carbon dioxide (CO2) emissions. This demonstration began with engine bench testing at Detroit Diesel Corporation to calibrate the system to attain 1 g/bhp-hr NOx emissions in the transient portion of the US-FTP on a 1999 Series 60 engine that has a 4 g/bhp-hr emission level. The second phase of the project entails an on-highway demonstration of a set of ten, Freightliner Class 8 heavy-duty diesel vehicles. These vehicles are part of the Valley Material Transport fleet based in French Camp, California.
Technical Paper

Long Term Stable NOx Sensor with Integrated In-Connector Control Electronics

1999-03-01
1999-01-0202
This paper describes improvements achieved with regard to the long term stability and the system integrability of a previously described thick film NOx sensor for gasoline lean burn and diesel applications. (1, 2, 3) Durability test up to 1000 hours consisting of a temperature cycle have been carried out by a stoichiometric operating gasoline engine test bench. The NOx sensor demonstrates the NOx output shift in terms of the NOx sensitivity less than 5 % on a model gas apparatus and ± 7 % measuring accuracy in practical operating condition on a diesel engine after 1000 hours that is equivalent to approximately 60K miles driving. The integration of the control electronics for the sensor in its connector is achieved for the sensitive measuring current in the μA-range or less on vehicle applications. The developed electronics functions closed-loop controls for a tip temperature and oxygen pumps as well as a diagnosis of sensor malfunctions.
X