Refine Your Search

Topic

Search Results

Technical Paper

Effects of Oxygenated Fuels on DI Diesel Combustion and Emissions

2001-03-05
2001-01-0648
Experiments to study the effects of oxygenated fuels on emissions and combustion were performed in a single-cylinder direct-injection (DI) diesel engine. A matrix of oxygen containing fuels assessed the impact of weight percent oxygen content, oxygenate chemical structure, and oxygenate volatility on emissions. Several oxygenated chemicals were blended with an ultra-low sulfur diesel fuel and evaluated at an equivalent energy release and combustion phasing. Additional experiments investigated the effectiveness of oxygenated fuels at a different engine load, a matched fuel/air equivalence ratio, and blended with a diesel fuel from the Fischer-Tropsch process. Interactions between emissions and critical engine operating parameters were also quantified. A scanning mobility particle sizer (SMPS) was used to evaluate particle size distributions, in addition to particulate matter (PM) filter and oxides of nitrogen (NOx) measurements.
Technical Paper

Liquid Fuel Flow in the Vicinity of the Intake Valve of a Port-Injected SI Engine

1998-10-19
982471
Liquid fuel flow into the cylinder an important source of hydrocarbon (HC) emissions of an SI engine. This is an especially important HC source during engine warm up. This paper examines the phenomena that determine the inflow of liquid fuel through the intake valve during a simulated start-up procedure. A Phase Doppler Particle Analyzer (PDPA) was used to measure the size and velocity of liquid fuel droplets in the vicinity of the intake valve in a firing transparent flow-visualization engine. These characteristics were measured as a function of engine running time and crank angle position during four stroke cycle. Droplet characteristics were measured at 7 angular positions in 5 planes around the circumference of the intake valve for both open and closed-valve injection. Additionally the cone shaped geometry of the entering liquid fuel spray was visualized using a Planar Laser Induced Fluorescence (PLIF) setup on the same engine.
Technical Paper

A Rapid Compression Machine Study of the Influence of Charge Temperature on Diesel Combustion

1987-02-01
870587
Difficulties in the starting and operation of diesel engines at low temperatures are an important consideration in their design and operation, and in selection of the fuels for their use. Improvements in operation have been achieved primarily through external components of the engine and associated subsystems. A Rapid Compression Machine (RCM) has been modified to operate over a wide range of temperatures (−20°C to 100°C). It is used to isolate the combustion chamber in an environment in which all significant parameters are carefully defined and monitored. The influence of temperature and cetane number on the ignition and combustion processes are analyzed. Examination of the combustion characteristics show that temperature is by far the most influential factor affecting both ignition delay and heat release profiles. Cetane number (ASTM D-613) is not found to be a strong indicator of ignition delay for the conditions investigated.
Technical Paper

Current Developments in Spark-Ignition Engines

1976-02-01
760606
This paper reviews the major changes that have occurred in spark-ignition engine design and operation over the last two decades. The automobile air pollution problem, automobile emission standards, and automobile fuel economy standards -- the factors which have and are producing these changes -- are briefly described. The major components in spark-ignition engine emission control systems are outlined, and advances in carburetion, fuel injection, ignition systems, spark retard and exhaust gas recycle strategies, and catalytic converters, are reviewed. The impact of these emission controls on vehicle fuel economy is assessed. The potential for fuel economy improvements in conventional spark-ignition engines is examined, and promising developments in improved engine and vehicle matching are outlined.
Technical Paper

Flow in the Piston-Cylinder-Ring Crevices of a Spark-Ignition Engine: Effect on Hydrocarbon Emissions, Efficiency and Power

1982-02-01
820088
The flow into and out of the piston top-land crevice of a spark-ignition engine has been studied, using a square-cross-section single-cylinder engine with two parallel quartz glass walls which permit optical access to the entire cylinder volume. Schlieren short-time exposure photographs and high speed movies were used to define the essential features of this flow. The top-land crevice and the regions behind and between the rings consist of volumes connected through the ring gaps. A system model of volumes and orifices was therefore developed and used to predict the flow into and out of the crevice regions between the piston, piston rings and cylinder wall.
Technical Paper

Fuel Injection Characteristics and Combustion Behavior of a Direct-Injection Stratified-Charge Engine

1984-10-01
841379
High levels of hydrocarbon emissions during light load operation keep the direct injection stratified charge engine from commercial application. Previous analytical work has identified several possible hydrocarbon emissions mechanisms which can result from poor in-cylinder fuel distribution. Poor fuel distribution can be caused by erratic fuel injection. Experiments conducted on a single cylinder DISC engine show a dramatic increase in the cycle to cycle variation in injection characteristics as engine load decreases. This is accompanied by an increase in cycle to cycle variation in combustion behavior suggesting that degradation in combustion results from the degradation in the quality of the injection event. Examination of combustion and injection characteristics on a cycle by cycle basis shows that, at light load, IMEP and heat release do not correlate with the amount of fuel injected into the cylinder.
Technical Paper

Heat Release Analysis of Engine Pressure Data

1984-10-01
841359
In analyzing the processes inside the cylinder of an internal combustion engine, the principal diagnostic at the experimenter's disposal is a measured time history of the cylinder pressure. This paper develops, tests, and applies a heat release analysis procedure that maintains simplicity while including the effects of heat transfer, crevice flows and fuel injection. The heat release model uses a one zone description of the cylinder contents with thermodynamic properties represented by a linear approximation for γ(T). Applications of the analysis to a single-cylinder spark-ignition engine, a special square cross-section visualization spark-ignition engine, and a direct-injection stratified charge engine are presented.
Technical Paper

Lean SI Engines: The role of combustion variability in defining lean limits

2007-09-16
2007-24-0030
Previous research has shown the potential benefits of running an engine with excess air. The challenges of running lean have also been identified, but not all of them have been fundamentally explained. Under high dilution levels, a lean limit is reached where combustion becomes unstable, significantly deteriorating drivability and engine efficiency, thus limiting the full potential of lean combustion. This paper expands the understanding of lean combustion by explaining the fundamentals behind this rapid rise in combustion variability and how this instability can be reduced. A flame entrainment combustion model was used to explain the fundamentals behind the observed combustion behavior in a comprehensive set of lean gasoline and hydrogen-enhanced cylinder pressure data in an SI engine. The data covered a wide range of operating conditions including different compression ratios, loads, types of dilution, fuels including levels of hydrogen enhancement, and levels of turbulence.
Technical Paper

A Simplified Piston Secondary Motion Model Considering the Dynamic and Static Deformation of Piston Skirt and Cylinder Bore in Internal Combustion Engines

2008-06-23
2008-01-1612
A dry piston secondary dynamics model has been developed. This model includes the detailed piston and cylinder bore hot shape geometries, and piston deformations due to combustion pressure, axial inertia and interaction with the cylinder bore, but neglects the effects of the hydrodynamic lubrication at the piston - cylinder bore interface in order to achieve faster calculation times. The piston - cylinder bore friction is calculated using a user supplied friction coefficient. This model provides a very useful, fast tool for power cylinder system analysis, provided its limitations are understood.
Technical Paper

A Novel Approach to Model the Lubrication and Friction between the Twin-Land Oil Control Ring and Liner with Consideration of Micro Structure of the Liner Surface Finish in Internal Combustion Engines

2008-06-23
2008-01-1613
This paper presents a model for the lubrication and friction between a twin land oil control ring and the liner within an engine cycle. This model is based on the deterministic method, which considers micro geometry of the liner finish and its effects on both hydrodynamic lubrication and asperity contact. In this particular application, the liner surface micro features are solely responsible for hydrodynamic pressure generation due to the flat face profile of a typical twin land oil control ring, contrasting to the traditional average model where ring surface macro geometry is most important in generating hydrodynamic pressure.
Technical Paper

The Influences of Cylinder Liner Honing Patterns and Oil Control Ring Design Parameters on the Interaction between the Twinland Oil Control Ring and the Cylinder Liner in Internal Combustion Engines

2008-06-23
2008-01-1614
This paper discusses the influences of several cylinder liner honing surface geometrical features on the interaction between the piston twin land oil control ring (TLOCR) and the cylinder liner by using the deterministic hydrodynamic model [1] and the twin land oil control ring model [2]. Additionally, the key design parameters of the TLOCR, including ring tension and land axial width are studied. The results show significant effects of three liner honing surface features beyond height distribution, including plateau wavelength, groove density and honing angle in hydrodynamic pressure generation. The study in oil control ring design parameters reveals that both ring tension and land axial width have important influences on friction and oil consumption, and their competing effects are discussed subsequently.
Technical Paper

A Deterministic Model for Lubricant Transport within Complex Geometry under Sliding Contact and its Application in the Interaction between the Oil Control Ring and Rough Liner in Internal Combustion Engines

2008-06-23
2008-01-1615
A general deterministic hydrodynamic lubrication model [1] was modified to study the interaction between a Twin Land Oil Control Ring (TLOCR) and a liner with cross-hatch liner finish. Efforts were made to customize the general model to simulate the particular sliding condition of TLOCR/liner interaction with proper boundary conditions. The results show that model is consistent, robust, and efficient. The lubricant mass conservation was justified and discussed. Then analysis was conducted on the lubricant transport between the deep grooves/valleys and plateau part of the surface to illustrate the importance of deep grooves in oil supply to the plateau part and hydrodynamic pressure generation. Furthermore, since the TLOCR land running surface is completely flat and parallel to the nominal liner axis, the liner finish micro geometry is fully responsible for the hydrodynamic pressure rise, which was found to be sufficient to support significant portion of the total ring radial load.
Technical Paper

An Experimental Study of the Time Scales and Controlling Factors Affecting Drastic Blow-by Increases during Transient Load Changes in SI Engines

2008-04-14
2008-01-0794
This paper presents the follow up to previous work done by Przesmitzki and Tian [1] studying large increases in blow-by in a spark ignition engine during transient load changes. This study examines the sensitivity of such blow-by spikes to differing intake pressures, and the time spent under both high and low intake pressure. The study consisted of experiments with a single cylinder test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling to explain certain phenomenon observed during the experiments. The previous work found that a very large blow-by spike could occur upon a transition from low engine load to a high engine load. The hypothesis was the top ring groove was being filled with oil during low engine load. Thereafter, it was hypothesized a transition to high load resulted in radial collapse of the top ring, and the subsequent blow by spike.
Technical Paper

Fuel Metering Effects on Hydrocarbon Emissions and Engine Stability During Cranking and Start-up in a Port Fuel Injected Spark Ignition Engine

2000-10-16
2000-01-2836
A cycle by cycle analysis of engine behavior during the first few cycles of cranking and start-up was performed on a production four-cylinder engine. Experiments were performed to elucidate the effects of initial engine position (rest position after last engine shut-down), first and second cycle fueling, engine temperature, and spark timing on fuel delivery to the cylinder, engine-out Hydrocarbon (EOHC) emissions, and Gross Indicated Mean Effective Pressure (IMEPg). The most important effect of the piston starting position is on the first firing cycle engine rpm, which influences the IMEPg through combustion phasing. Because of the low rpm values for the first cycle, combustion is usually too advanced with typical production engine ignition timing. For both the hot start and the ambient start, the threshold for firing is at an in-cylinder air equivalence ratio (λ) of 1.1.
Technical Paper

An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement

2006-04-03
2006-01-0228
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
Technical Paper

Oil Transport Inside the Power Cylinder During Transient Load Changes

2007-04-16
2007-01-1054
This paper presents a study of lubricating oil transport and exchange in a four-stroke spark ignition engine while undergoing transient load changes. The study consisted of experiments with a single cylinder test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling to describe certain phenomenon observed during the experiments. The computer modeling results included ring dynamics and corresponding gas flows through different regions of the power cylinder. Under steady-state conditions and constant speed during the experiments, more oil was observed on the piston at low load than at high load. Therefore, a transition from low load to high load resulted in oil leaving the piston, and a transition from high load to low load resulted in oil being added to the piston.
Technical Paper

Effects of Charge Motion Control During Cold Start of SI Engines

2006-10-16
2006-01-3399
An experimental study was performed to investigate the effects of various intake charge motion control valves (CMCVs) on mixture preparation, combustion, and hydrocarbon (HC) emissions during the cold start-up process of a port fuel injected spark ignition (SI) engine. Different charge motions were produced by three differently shaped plates in the CMCV device, each of which blocked off 75% of the engine's intake ports. Time-resolved HC, CO and CO2 concentrations were measured at the exhaust port exit in order to achieve cycle-by-cycle engine-out HC mass and in-cylinder air/fuel ratio. Combustion characteristics were examined through a thermodynamic burn rate analysis. Cold-fluid steady state experiments were carried out with the CMCV open and closed. Enhanced charge motion with the CMCV closed was found to shorten the combustion duration, which caused the location of 50% mass fraction burned (MFB) to occur up to 5° CA earlier for the same spark timing.
Technical Paper

Influence of Intake Port Charge-Motion-Control-Valve on Mixture Preparation in a Port-Fuel-Injection Engine

2007-10-29
2007-01-4013
The effects of the directed port flow produced by a Charge-Motion-Control-Valve (CMCV) on mixture preparation in a Port-Fuel-Injection engine were assessed under conditions typical of fast idle in a cold start process. The port fuel was found to comprise two components: a “valve” puddle (at the vicinity of the valve) that built up quickly, and that was mainly responsible for the delivery of the fuel to the cylinder charge; a “port” puddle located significantly upstream. The latter was mainly created by the reverse back flow process and built up slowly. Although the fuel amounts in these two components were roughly the same, the latter did not significantly interact with the fuel transport to the cylinder charge. The CMCV only weakly affected the purging or filling time of the valve puddle, hence the dynamics of the fuel delivery process was not materially affected.
Technical Paper

Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept

2004-03-08
2004-01-0975
Experiments were performed to identify the knock trends of lean hydrocarbon-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO). These enhanced mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer [1]. Knock trends were determined by measuring the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The knock tendency does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced.
Technical Paper

Effects of Substantial Spark Retard on SI Engine Combustion and Hydrocarbon Emissions

2003-10-27
2003-01-3237
Experiments were conducted to determine the effects of substantial spark retard on combustion, hydrocarbon (HC) emissions, and exhaust temperature, under cold engine conditions. A single-cylinder research engine was operated at 20° C fluid temperatures for various spark timings and relative air/fuel ratios. Combustion stability was observed to decrease as the phasing of the 50% mass fraction burned (MFB) occurred later in the expansion stroke. A thermodynamic burn rate analysis indicated combustion was complete at exhaust valve opening with -20° before top dead center (BTDC) spark timings. Chemical and thermal energy of the exhaust gas was tracked from cylinder-exit to the exhaust runner. Time-resolved HC concentrations measured in the port and runner were mass weighted to obtain an exhaust HC mass flow rate. Results were compared to time averaged well downstream HC levels.
X