Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

A Large-Scale Robotic System for Depainting Advanced Fighter Aircraft

2011-10-18
2011-01-2652
The general benefits of automation are well documented. Order of magnitude improvements are achievable in processing speeds, production rates, and efficiency. Other benefits include improved process consistency (inversely, reduced process variation), reduced waste and energy consumption, and risk reduction to operators. These benefits are especially true for the automation of the aerospace paint removal (or "depaint") processes. Southwest Research Institute® (SwRI®) developed and implemented two systems in the early 1990s for depainting full-body fighter aircraft at Robins Air Force Base (AFB) at Warner Robins, Georgia, and Hill AFB at Ogden, Utah. These systems have been in production use, almost continuously for approximately 20 years, for the depainting of the F-15 Eagle and the F-16 Falcon fighter aircraft, respectively.
Technical Paper

Lower Explosion Limits and Compositions of Middle Distillate Fuel Vapors

1998-10-19
982485
Lower explosion limits (LEL) and the chemical compositions of JP-8, Jet A and JP-5 fuel vapors were determined in a sealed combustion vessel equipped with a spark igniter, a gas-sampling probe, and sensors to measure pressure rise and fuel temperature. Ignition was detected by pressure rise in the vessel. Pressure rises up to 60 psig were observed near the flash points of the test fuels. The fuel vapors in the vessel ignited from as much as 11°F below flash-point measurements. Detailed hydrocarbon speciation of the fuel vapors was performed using high-resolution gas chromatography. Over 300 hydrocarbons were detected in the vapors phase. The average molecular weight, hydrogen to carbon ratio, and LEL of the fuel vapors were determined from the concentration measurements. The jet fuel vapors had molecular weights ranging from 114 to 132, hydrogen to carbon ratios of approximately 1.93, and LELs comparable to pure hydrocarbons of similar molecular weight.
Technical Paper

Paint Integrity and Corrosion Sensor

2002-03-04
2002-01-0205
Atmospheric corrosion of steels, aluminum alloys, and Al-clad aluminum alloys is a problem for many civil engineering structures, commercial and military vehicles, and aircraft. Paint is usually the primary means to prevent the corrosion of steel bridge components, automobiles, trucks, and aircraft. Under ideal conditions, the coating provides a continuous layer that is impervious to moisture. At present, maintenance cycles for commercial and military aircraft and ground vehicles, as well as engineered structures, is based on experience and appearance rather than a quantitative determination of coating integrity. To improve the maintenance process and reduce costs, sensors are often used to monitor corrosion. The present suite of sensors designed to detect corrosion and marketed to predict the lifetime of the engineered components, however, are not useful for determining the condition of the protective paint coatings.
Technical Paper

Effect of Low-Lubricity Fuels on Diesel Injection Pumps - Part II:Laborator Evaluation

1992-02-01
920824
This paper is the second of two that describe the effects of low-lubricity fuels on diesel injection pump performance. The first paper describes the primary failure mechanisms and wear processes in a number of failed pumps removed from both military and civilian vehicles that had been operated on Jet A-1 and diesel fuels. However, the multitude of unregulated parameters in practical operation renders quantitative comparison between different fuels and pump combinations impractical. This paper describes the degradation in pump performance and the wear processes associated with fuels of varying lubricity in the well-defined environment of a pump test stand. The test methodology concentrates on those areas previously demonstrated to be most susceptible to wear. The results indicate that pump durability is reduced by highly refined low-viscosity fuels, but may be successfully counteracted by either improved metallurgy or lubricity additives.
Technical Paper

Effect of Low-Lubricity Fuels on Diesel Injection Pumps - Part I: Field Performance

1992-02-01
920823
The U.S. Department of Defense has adopted a concept in which a single fuel will be used on the battlefield; diesel fuel will be replaced by JP-8/JP-5/Jet A-1 in compression ignition engines, thereby decreasing the fuel logistics burden. JP-8 fuel has successfully undergone extensive testing in both the laboratory and in field trials. However, increased failure rates for fuel-lubricated rotary injection pump components operating on Jet A-1 aviation turbine fuel were reported during Operation Desert Shield. This paper is the first of two and describes the disassembly and failure analysis of twelve rotary fuel injection pumps that operated on Jet A-1. Also disassembled as a baseline for comparison were three additional pumps from civilian vehicles that had operated on commercial diesel. Each of the pumps had a unique service history, making quantitative comparison difficult.
Technical Paper

Technology Demonstration of U.S. Army Ground Materiel Operating on Aviation Kerosene Fuel

1992-02-01
920193
A technology demonstration program was conducted by the U.S. Army to verify the feasibility of using aviation turbine fuel JP-8 in all military diesel fuel-consuming ground vehicles and equipment (V/E). Over 2,800 pieces of military equipment participated in a two and one-half year program accumulating over 2,621,000 total miles (4,219,810 km) using JP-8 in combat/tracked, tactical/wheeled, and transportation motor pool vehicles. Over 71,000 hours of operation were accumulated in diesel/turbine engine-driven generator sets using JP-8 fuel. Comparisons of various performance areas with baseline diesel fuel (DF-2) operation were made.
Technical Paper

Army Use of Near-Infrared Spectroscopy to Estimate Selected Properties of Compression Ignition Fuels

1993-03-01
930734
The U.S. Army has long identified the need for rapid, reliable methods for analysis of fuels and lubricants on or near the battlefield. The analysis of fuels and lubricants under battlefield or near-battlefield conditions requires that the equipment be small, portable, rugged, quick, and easy to use. Over the past 15 to 20 years, several test kits and portable laboratories have been developed in response to this need. One instrumental technique that has been identified as a likely candidate to meet this need is near-infrared spectroscopy (NIR). To evaluate NIR as a candidate, a set of 280 fuel samples was used. This sample set contained samples of diesel fuel grades 1 and 2, Jet A-l, JP-5, and JP-8. Inspection data were collected on all the fuels as sample size permitted. Each sample was then scanned using a near-infrared spectrometer. Data analysis, model building, and calibration were conducted using a software package supplied with the instrument.
Technical Paper

A Heavy-Fueled Engine for Unmanned Aerial Vehicles

1995-02-01
950773
The growing usage of Unmanned Aerial Vehicles (UAVs) for aerial surveillance and reconnaissance in military applications calls for lightweight, reliable powerplants that burn heavy distillate fuels. While mass-produced engines exist that provide adequate power-to-weight ratio in the low power class needed for UAVs, they all use a spark-ignited combustion system that requires high octane fuels. Southwest Research Institute (SwRI) has embarked upon an internal research effort to design and demonstrate an engine that will meet the requirements of high power density, power output compatible with small unmanned aircraft, heavy-fuel combustion, reliable, durable construction, and producible design. This effort has culminated in the successful construction and operation of a demonstrator engine.
Technical Paper

U.S. Army Investigation of Diesel Exhaust Emissions Using JP-8 Fuels with Varying Sulfur Content

1996-10-01
961981
Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 weight percent (wt%) was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are equivalent to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel.
Technical Paper

System Component Coupling for Structure Borne Noise Isolation Studies

1997-05-01
971460
Control of structure borne noise transmission into an aircraft cabin generated from component excitation, such as rotor/engine vibration imbalance or firing excitations or from auxiliary equipment induced vibrations, can be studied empirically via impedance characterization of the system components and application of appropriate component coupling procedures. The present study was aimed at demonstrating the usefulness of such impedance modeling techniques as applied to a Bell 206B rotorcraft and a Cessna TR182 general aviation aircraft. Simulated rotor/engine excitations were applied to the assembled aircraft systems to provide baseline structure borne noise transmission data. Thereafter, impedance tests of the system components were carried out to provide a data base from which system component coupling studies were carried out.
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

Interior Noise Source/Path Identification Technology

2000-05-09
2000-01-1709
Excessive interior noise and vibration in propeller driven general aviation aircraft can result in poor pilot communications with ground control personnel and passengers, and, during extended flights, can lead to pilot and passenger fatigue. Noise source/path identification technology applicable to single engine propeller driven aircraft were employed to identify interior noise sources originating from structure-borne engine/propeller vibration, airborne propeller transmission, airborne engine exhaust noise, and engine case radiation. The approach taken was first to conduct a Principal Value Analysis (PVA) of an in-flight noise and vibration database acquired on a single engine aircraft to obtain a correlated data set as viewed by a fixed set of cabin microphones.
Technical Paper

Alternative Fuels: Development of a Biodiesel B20 Purchase Description

2000-12-04
2000-01-3428
Alternative fuels made from materials other than petroleum are available for use in alternative fueled vehicles (AFVs) and some conventional vehicles. Liquid fuels such as biodiesel could be used in U.S. Army or other Military/Federal Government compression ignition (CI) engine powered vehicles. The military combat/tactical fleet is exempt from Federal Government mandates to use alternative fueled vehicles and has adopted JP-8/JP-5 jet fuel as the primary military fuel. The Army non-tactical fleet and other Federal nonexempt CI engine powered vehicles are possible candidates for using biodiesel. Inclusion of biodiesel as an alternative fuel qualifying for alternative fueled vehicle credits for fleets required to meet AFV requirements has allowed for its use at 20 (minimum) percent biodiesel in petroleum diesel fuel. Alternative fuels are being considered for the 21st Century Truck (21T) program. [1]
Technical Paper

Review of the Computer Science and Engineering Solutions for Model Sharing and Model Co-Simulation

2019-03-19
2019-01-1352
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. One common example is sharing aircraft engine models with airframers. The functionality of a given model may be utilized and shared with a secondary model, or multiple models may run collaboratively through co-simulation. There are many technical challenges associated with model sharing and co-simulation. For example, data communication between models and tools must be accurate and reliable, and the model usage must be well-documented and perspicuous for a user. This requires clear communication and understanding between computer scientists and engineers. Most often, models are developed by engineers, whereas the tools used to share the models are developed by computer scientists.
X